基于稳定性结果的线性增长进化Neumann问题的存在性

IF 0.9 4区 数学 Q2 Mathematics
Leah Schätzler
{"title":"基于稳定性结果的线性增长进化Neumann问题的存在性","authors":"Leah Schätzler","doi":"10.5186/AASFM.2019.4461","DOIUrl":null,"url":null,"abstract":"Abstract. We are concerned with the Neumann type boundary value problem to parabolic systems ∂tu− div(Dξf(x,Du)) = −Dug(x, u), where u is vector-valued, f satisfies a linear growth condition and ξ 7→ f(x, ξ) is convex. We prove that variational solutions of such systems can be approximated by variational solutions to ∂tu− div(Dξf(x,Du)) = −Dug(x, u) with p > 1. This can be interpreted both as a stability and existence result for general flows with linear growth.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence for evolutionary Neumann problems with linear growth by stability results\",\"authors\":\"Leah Schätzler\",\"doi\":\"10.5186/AASFM.2019.4461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We are concerned with the Neumann type boundary value problem to parabolic systems ∂tu− div(Dξf(x,Du)) = −Dug(x, u), where u is vector-valued, f satisfies a linear growth condition and ξ 7→ f(x, ξ) is convex. We prove that variational solutions of such systems can be approximated by variational solutions to ∂tu− div(Dξf(x,Du)) = −Dug(x, u) with p > 1. This can be interpreted both as a stability and existence result for general flows with linear growth.\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/AASFM.2019.4461\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/AASFM.2019.4461","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究抛物型系统∂tu - div(Dξf(x,Du)) = - Dug(x, u)的Neumann型边值问题,其中u是向量值,f满足线性增长条件,ξ 7→f(x, ξ)是凸的。我们证明了这种系统的变分解可以用∂tu−div(Dξf(x,Du)) =−Dug(x, u)的变分解近似,且p > 1。这可以解释为具有线性增长的一般流的稳定性和存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence for evolutionary Neumann problems with linear growth by stability results
Abstract. We are concerned with the Neumann type boundary value problem to parabolic systems ∂tu− div(Dξf(x,Du)) = −Dug(x, u), where u is vector-valued, f satisfies a linear growth condition and ξ 7→ f(x, ξ) is convex. We prove that variational solutions of such systems can be approximated by variational solutions to ∂tu− div(Dξf(x,Du)) = −Dug(x, u) with p > 1. This can be interpreted both as a stability and existence result for general flows with linear growth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信