集体不稳定性和非线性梁动力学的统一处理

K. Ng, S. Lee
{"title":"集体不稳定性和非线性梁动力学的统一处理","authors":"K. Ng, S. Lee","doi":"10.1109/PAC.1999.794282","DOIUrl":null,"url":null,"abstract":"Nonlinear dynamics deals with parametric resonances and diffusion, which are usually beam-intensity independent and rely on a particle Hamiltonian. Collective instabilities deal with beam coherent motion, where the Vlasov equation is frequently used in conjunction with a beam-intensity dependent Hamiltonian. We address the questions: Are the two descriptions the same? Are collective instabilities the results of encountering parametric resonances whose driving force is intensity dependent? The space-charge dominated beam governed by the Kapchinskij-Vladimirskij (KV) envelope equation is used as an example.","PeriodicalId":20453,"journal":{"name":"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)","volume":"34 1","pages":"1854-1856 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"1999-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unified treatment of collective instabilities and nonlinear beam dynamics\",\"authors\":\"K. Ng, S. Lee\",\"doi\":\"10.1109/PAC.1999.794282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear dynamics deals with parametric resonances and diffusion, which are usually beam-intensity independent and rely on a particle Hamiltonian. Collective instabilities deal with beam coherent motion, where the Vlasov equation is frequently used in conjunction with a beam-intensity dependent Hamiltonian. We address the questions: Are the two descriptions the same? Are collective instabilities the results of encountering parametric resonances whose driving force is intensity dependent? The space-charge dominated beam governed by the Kapchinskij-Vladimirskij (KV) envelope equation is used as an example.\",\"PeriodicalId\":20453,\"journal\":{\"name\":\"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)\",\"volume\":\"34 1\",\"pages\":\"1854-1856 vol.3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PAC.1999.794282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAC.1999.794282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非线性动力学处理参数共振和扩散,它们通常与光束强度无关,依赖于粒子哈密顿量。集体不稳定性处理光束相干运动,其中弗拉索夫方程经常与光束强度相关的哈密顿量一起使用。我们解决以下问题:这两种描述是相同的吗?集体不稳定性是遇到驱动力依赖于强度的参数共振的结果吗?以Kapchinskij-Vladimirskij (KV)包络方程控制的空间电荷主导束流为例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unified treatment of collective instabilities and nonlinear beam dynamics
Nonlinear dynamics deals with parametric resonances and diffusion, which are usually beam-intensity independent and rely on a particle Hamiltonian. Collective instabilities deal with beam coherent motion, where the Vlasov equation is frequently used in conjunction with a beam-intensity dependent Hamiltonian. We address the questions: Are the two descriptions the same? Are collective instabilities the results of encountering parametric resonances whose driving force is intensity dependent? The space-charge dominated beam governed by the Kapchinskij-Vladimirskij (KV) envelope equation is used as an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信