A. Tripathi, S. N. Maiti, Josemon Jacob, Jyoti Singh, P. Chakraborty
{"title":"基于聚(ε-己内酯)的生物友好型绿色生物复合材料:屈服后断裂、结晶、流变和微力学行为","authors":"A. Tripathi, S. N. Maiti, Josemon Jacob, Jyoti Singh, P. Chakraborty","doi":"10.1063/1.5122403","DOIUrl":null,"url":null,"abstract":"In this study low cost biodegradable fillers was incorporated as reinforcing filler into poly(e-caprolactone (PCL) matrix by melt compounding (0-35 wt. %) in a twin screw extruder. The prepared biocomposites were investigated for their Thermomechanical, melt rheological, fracture, and crystallization behaviors. The essential work of fracture (we) is reduced on incorporation of GTS while increase in the non-essential work of fracture (βwp) is observed. The composites with 20 wt% of GTS showed 121% increase in the βwp due to reduced interspherulitic region while 35 % decrease in the parameter is registered for highest GTS content (35 wt. %). From the DSC measurements, sharp decrease in crystallinity was observed for all the compositions studied. The crystallization behavior of PCL in presence of varying concentrations of natural fillers ranging from 5 to 35 wt% is also studied. Various crystallization parameters were studied by DSC at four different cooling rates and these parameters were analysed employing Ozawa, Jeziorny and Liu models. Kissinger method was used to estimate the activation energy (ΔE) of the PCL/GTS composites. The ΔE results suggested that the speed of crystallization was inhibited by GTS particles.In this study low cost biodegradable fillers was incorporated as reinforcing filler into poly(e-caprolactone (PCL) matrix by melt compounding (0-35 wt. %) in a twin screw extruder. The prepared biocomposites were investigated for their Thermomechanical, melt rheological, fracture, and crystallization behaviors. The essential work of fracture (we) is reduced on incorporation of GTS while increase in the non-essential work of fracture (βwp) is observed. The composites with 20 wt% of GTS showed 121% increase in the βwp due to reduced interspherulitic region while 35 % decrease in the parameter is registered for highest GTS content (35 wt. %). From the DSC measurements, sharp decrease in crystallinity was observed for all the compositions studied. The crystallization behavior of PCL in presence of varying concentrations of natural fillers ranging from 5 to 35 wt% is also studied. Various crystallization parameters were studied by DSC at four different cooling rates and these parameters were analysed employing...","PeriodicalId":7262,"journal":{"name":"ADVANCES IN BASIC SCIENCE (ICABS 2019)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biofriendly and green biocomposites based on poly (ε-caprolactone): Post-yield fracture, crystallization, rheological and micromechanical behaviors\",\"authors\":\"A. Tripathi, S. N. Maiti, Josemon Jacob, Jyoti Singh, P. Chakraborty\",\"doi\":\"10.1063/1.5122403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study low cost biodegradable fillers was incorporated as reinforcing filler into poly(e-caprolactone (PCL) matrix by melt compounding (0-35 wt. %) in a twin screw extruder. The prepared biocomposites were investigated for their Thermomechanical, melt rheological, fracture, and crystallization behaviors. The essential work of fracture (we) is reduced on incorporation of GTS while increase in the non-essential work of fracture (βwp) is observed. The composites with 20 wt% of GTS showed 121% increase in the βwp due to reduced interspherulitic region while 35 % decrease in the parameter is registered for highest GTS content (35 wt. %). From the DSC measurements, sharp decrease in crystallinity was observed for all the compositions studied. The crystallization behavior of PCL in presence of varying concentrations of natural fillers ranging from 5 to 35 wt% is also studied. Various crystallization parameters were studied by DSC at four different cooling rates and these parameters were analysed employing Ozawa, Jeziorny and Liu models. Kissinger method was used to estimate the activation energy (ΔE) of the PCL/GTS composites. The ΔE results suggested that the speed of crystallization was inhibited by GTS particles.In this study low cost biodegradable fillers was incorporated as reinforcing filler into poly(e-caprolactone (PCL) matrix by melt compounding (0-35 wt. %) in a twin screw extruder. The prepared biocomposites were investigated for their Thermomechanical, melt rheological, fracture, and crystallization behaviors. The essential work of fracture (we) is reduced on incorporation of GTS while increase in the non-essential work of fracture (βwp) is observed. The composites with 20 wt% of GTS showed 121% increase in the βwp due to reduced interspherulitic region while 35 % decrease in the parameter is registered for highest GTS content (35 wt. %). From the DSC measurements, sharp decrease in crystallinity was observed for all the compositions studied. The crystallization behavior of PCL in presence of varying concentrations of natural fillers ranging from 5 to 35 wt% is also studied. Various crystallization parameters were studied by DSC at four different cooling rates and these parameters were analysed employing...\",\"PeriodicalId\":7262,\"journal\":{\"name\":\"ADVANCES IN BASIC SCIENCE (ICABS 2019)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ADVANCES IN BASIC SCIENCE (ICABS 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5122403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADVANCES IN BASIC SCIENCE (ICABS 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5122403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biofriendly and green biocomposites based on poly (ε-caprolactone): Post-yield fracture, crystallization, rheological and micromechanical behaviors
In this study low cost biodegradable fillers was incorporated as reinforcing filler into poly(e-caprolactone (PCL) matrix by melt compounding (0-35 wt. %) in a twin screw extruder. The prepared biocomposites were investigated for their Thermomechanical, melt rheological, fracture, and crystallization behaviors. The essential work of fracture (we) is reduced on incorporation of GTS while increase in the non-essential work of fracture (βwp) is observed. The composites with 20 wt% of GTS showed 121% increase in the βwp due to reduced interspherulitic region while 35 % decrease in the parameter is registered for highest GTS content (35 wt. %). From the DSC measurements, sharp decrease in crystallinity was observed for all the compositions studied. The crystallization behavior of PCL in presence of varying concentrations of natural fillers ranging from 5 to 35 wt% is also studied. Various crystallization parameters were studied by DSC at four different cooling rates and these parameters were analysed employing Ozawa, Jeziorny and Liu models. Kissinger method was used to estimate the activation energy (ΔE) of the PCL/GTS composites. The ΔE results suggested that the speed of crystallization was inhibited by GTS particles.In this study low cost biodegradable fillers was incorporated as reinforcing filler into poly(e-caprolactone (PCL) matrix by melt compounding (0-35 wt. %) in a twin screw extruder. The prepared biocomposites were investigated for their Thermomechanical, melt rheological, fracture, and crystallization behaviors. The essential work of fracture (we) is reduced on incorporation of GTS while increase in the non-essential work of fracture (βwp) is observed. The composites with 20 wt% of GTS showed 121% increase in the βwp due to reduced interspherulitic region while 35 % decrease in the parameter is registered for highest GTS content (35 wt. %). From the DSC measurements, sharp decrease in crystallinity was observed for all the compositions studied. The crystallization behavior of PCL in presence of varying concentrations of natural fillers ranging from 5 to 35 wt% is also studied. Various crystallization parameters were studied by DSC at four different cooling rates and these parameters were analysed employing...