改进Quora问题对数据集的问题相似度任务

H. T. Le, Dung T. Cao, Trung Bui, Long T. Luong, Huy-Quang Nguyen
{"title":"改进Quora问题对数据集的问题相似度任务","authors":"H. T. Le, Dung T. Cao, Trung Bui, Long T. Luong, Huy-Quang Nguyen","doi":"10.1109/RIVF51545.2021.9642071","DOIUrl":null,"url":null,"abstract":"Automatic detection of semantically equivalent questions is a task of the utmost importance in a question answering system. The Quora dataset, which was released in the Quora Question Pairs competition organized by Kaggle, has now been used by many researches to train the system in solving the task of identifying duplicate questions. However, the ground truth labels on this dataset are not 100% accurate and may include incorrect labeling. In this paper, we concentrate on improving the quality of the Quora dataset by combining several strategies, basing on Bert, rules, and reassigning labels by humans.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"19 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improve Quora Question Pair Dataset for Question Similarity Task\",\"authors\":\"H. T. Le, Dung T. Cao, Trung Bui, Long T. Luong, Huy-Quang Nguyen\",\"doi\":\"10.1109/RIVF51545.2021.9642071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic detection of semantically equivalent questions is a task of the utmost importance in a question answering system. The Quora dataset, which was released in the Quora Question Pairs competition organized by Kaggle, has now been used by many researches to train the system in solving the task of identifying duplicate questions. However, the ground truth labels on this dataset are not 100% accurate and may include incorrect labeling. In this paper, we concentrate on improving the quality of the Quora dataset by combining several strategies, basing on Bert, rules, and reassigning labels by humans.\",\"PeriodicalId\":6860,\"journal\":{\"name\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"volume\":\"19 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF51545.2021.9642071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

语义等价问题的自动检测是问答系统中最重要的一项任务。在由Kaggle组织的Quora问题配对竞赛中发布的Quora数据集,现在已经被许多研究用来训练系统解决识别重复问题的任务。然而,这个数据集上的真实值标签不是100%准确的,可能包括不正确的标签。在本文中,我们专注于通过结合几种策略来提高Quora数据集的质量,这些策略基于Bert、规则和人类重新分配标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improve Quora Question Pair Dataset for Question Similarity Task
Automatic detection of semantically equivalent questions is a task of the utmost importance in a question answering system. The Quora dataset, which was released in the Quora Question Pairs competition organized by Kaggle, has now been used by many researches to train the system in solving the task of identifying duplicate questions. However, the ground truth labels on this dataset are not 100% accurate and may include incorrect labeling. In this paper, we concentrate on improving the quality of the Quora dataset by combining several strategies, basing on Bert, rules, and reassigning labels by humans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信