基于片段级cnn特征和稀疏字典学习的人体跌倒检测

C. Ge, I. Gu, Jie Yang
{"title":"基于片段级cnn特征和稀疏字典学习的人体跌倒检测","authors":"C. Ge, I. Gu, Jie Yang","doi":"10.1109/MLSP.2017.8168185","DOIUrl":null,"url":null,"abstract":"This paper addresses issues in human fall detection from videos. Unlike using handcrafted features in the conventional machine learning, we extract features from Convolutional Neural Networks (CNNs) for human fall detection. Similar to many existing work using two stream inputs, we use a spatial CNN stream with raw image difference and a temporal CNN stream with optical flow as the inputs of CNN. Different from conventional two stream action recognition work, we exploit sparse representation with residual-based pooling on the CNN extracted features, for obtaining more discriminative feature codes. For characterizing the sequential information in video activity, we use the code vector from long-range dynamic feature representation by concatenating codes in segment-levels as the input to a SVM classifier. Experiments have been conducted on two public video databases for fall detection. Comparisons with six existing methods show the effectiveness of the proposed method.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"17 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Human fall detection using segment-level cnn features and sparse dictionary learning\",\"authors\":\"C. Ge, I. Gu, Jie Yang\",\"doi\":\"10.1109/MLSP.2017.8168185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses issues in human fall detection from videos. Unlike using handcrafted features in the conventional machine learning, we extract features from Convolutional Neural Networks (CNNs) for human fall detection. Similar to many existing work using two stream inputs, we use a spatial CNN stream with raw image difference and a temporal CNN stream with optical flow as the inputs of CNN. Different from conventional two stream action recognition work, we exploit sparse representation with residual-based pooling on the CNN extracted features, for obtaining more discriminative feature codes. For characterizing the sequential information in video activity, we use the code vector from long-range dynamic feature representation by concatenating codes in segment-levels as the input to a SVM classifier. Experiments have been conducted on two public video databases for fall detection. Comparisons with six existing methods show the effectiveness of the proposed method.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"17 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文讨论了从视频中检测人体跌倒的问题。与在传统机器学习中使用手工制作的特征不同,我们从卷积神经网络(cnn)中提取特征用于人体跌倒检测。与许多使用两种流输入的现有工作类似,我们使用具有原始图像差分的空间CNN流和光流的时间CNN流作为CNN输入。与传统的两流动作识别工作不同,我们在CNN提取的特征上利用基于残差池化的稀疏表示,以获得更具判别性的特征代码。为了表征视频活动中的顺序信息,我们使用远程动态特征表示的代码向量,通过在段级别上连接代码作为支持向量机分类器的输入。在两个公共视频数据库上进行了跌落检测实验。与已有的六种方法进行了比较,结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human fall detection using segment-level cnn features and sparse dictionary learning
This paper addresses issues in human fall detection from videos. Unlike using handcrafted features in the conventional machine learning, we extract features from Convolutional Neural Networks (CNNs) for human fall detection. Similar to many existing work using two stream inputs, we use a spatial CNN stream with raw image difference and a temporal CNN stream with optical flow as the inputs of CNN. Different from conventional two stream action recognition work, we exploit sparse representation with residual-based pooling on the CNN extracted features, for obtaining more discriminative feature codes. For characterizing the sequential information in video activity, we use the code vector from long-range dynamic feature representation by concatenating codes in segment-levels as the input to a SVM classifier. Experiments have been conducted on two public video databases for fall detection. Comparisons with six existing methods show the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信