针对实体匹配的高效数据清洗

J. Ao, Rada Y. Chirkova
{"title":"针对实体匹配的高效数据清洗","authors":"J. Ao, Rada Y. Chirkova","doi":"10.1145/3328519.3329127","DOIUrl":null,"url":null,"abstract":"As a key data-integration step, entity matching (EM) identifies tuples referring to the same real-world entities in disparate data sources. In many cases, the EM quality can be improved by repairing incorrect values in the data; at the same time, it is well known that the time costs of data cleaning by human experts could be prohibitive. In this paper, we focus on the time-consuming human-in-the-loop data-cleaning problem for relational EM, by recommending to human experts a time-efficient order in which values of attributes could be cleaned in the given data. Our proposed domain-independent cleaning framework aims to save human users' time, by guiding them in cleaning the EM inputs in an attribute order that is as conducive to maximizing EM accuracy as possible within a given constraint on the time they spend on cleaning. In guiding the cleaning process, our attribute-recommendation methods discover and take advantage of information provided by the data, and also use feedback from the EM engine. Our preliminary experimental results suggest that the proposed approach leads to measurable speedup, for a variety of time constraints, in the improvement of EM accuracy over the baseline approach, in which domain experts choose the sequence in which to clean the attributes of the inputs.","PeriodicalId":92279,"journal":{"name":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective and Efficient Data Cleaning for Entity Matching\",\"authors\":\"J. Ao, Rada Y. Chirkova\",\"doi\":\"10.1145/3328519.3329127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a key data-integration step, entity matching (EM) identifies tuples referring to the same real-world entities in disparate data sources. In many cases, the EM quality can be improved by repairing incorrect values in the data; at the same time, it is well known that the time costs of data cleaning by human experts could be prohibitive. In this paper, we focus on the time-consuming human-in-the-loop data-cleaning problem for relational EM, by recommending to human experts a time-efficient order in which values of attributes could be cleaned in the given data. Our proposed domain-independent cleaning framework aims to save human users' time, by guiding them in cleaning the EM inputs in an attribute order that is as conducive to maximizing EM accuracy as possible within a given constraint on the time they spend on cleaning. In guiding the cleaning process, our attribute-recommendation methods discover and take advantage of information provided by the data, and also use feedback from the EM engine. Our preliminary experimental results suggest that the proposed approach leads to measurable speedup, for a variety of time constraints, in the improvement of EM accuracy over the baseline approach, in which domain experts choose the sequence in which to clean the attributes of the inputs.\",\"PeriodicalId\":92279,\"journal\":{\"name\":\"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3328519.3329127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3328519.3329127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为一个关键的数据集成步骤,实体匹配(EM)识别引用不同数据源中相同真实实体的元组。在许多情况下,可以通过修复数据中的错误值来提高EM质量;与此同时,众所周知,由人类专家进行数据清理的时间成本可能令人望而却步。在本文中,我们通过向人类专家推荐一种时间效率高的顺序,在该顺序中可以清洗给定数据中的属性值,重点关注关系EM中耗时的人在循环中的数据清洗问题。我们提出的领域独立清洗框架旨在通过指导用户按照属性顺序清洗EM输入,从而节省人类用户的时间,这有助于在给定的清洗时间限制内尽可能地最大化EM准确性。在指导清理过程中,我们的属性推荐方法发现并利用数据提供的信息,并使用来自EM引擎的反馈。我们的初步实验结果表明,对于各种时间限制,所提出的方法在提高EM精度方面具有可测量的加速,而基线方法是领域专家选择清洗输入属性的顺序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective and Efficient Data Cleaning for Entity Matching
As a key data-integration step, entity matching (EM) identifies tuples referring to the same real-world entities in disparate data sources. In many cases, the EM quality can be improved by repairing incorrect values in the data; at the same time, it is well known that the time costs of data cleaning by human experts could be prohibitive. In this paper, we focus on the time-consuming human-in-the-loop data-cleaning problem for relational EM, by recommending to human experts a time-efficient order in which values of attributes could be cleaned in the given data. Our proposed domain-independent cleaning framework aims to save human users' time, by guiding them in cleaning the EM inputs in an attribute order that is as conducive to maximizing EM accuracy as possible within a given constraint on the time they spend on cleaning. In guiding the cleaning process, our attribute-recommendation methods discover and take advantage of information provided by the data, and also use feedback from the EM engine. Our preliminary experimental results suggest that the proposed approach leads to measurable speedup, for a variety of time constraints, in the improvement of EM accuracy over the baseline approach, in which domain experts choose the sequence in which to clean the attributes of the inputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信