G. Alexandropoulos, Evangelos Vlachos, J. Thompson
{"title":"混合波束成形接收毫米波海量Mimo系统的宽带信道跟踪","authors":"G. Alexandropoulos, Evangelos Vlachos, J. Thompson","doi":"10.1109/ICASSP40776.2020.9053440","DOIUrl":null,"url":null,"abstract":"Millimeter Wave (mmWave) massive Multiple Input Multiple Output (MIMO) channel tracking is a challenging task with Hybrid analog and digital BeamForming (HBF) reception architectures. The wireless channel can only be spatially sampled with directive analog beams, which results in lengthy training periods when beam codebooks are large. In this paper, we capitalize on a recently proposed HBF architecture enabling mmWave massive MIMO channel estimation with short beam training overhead, and present a matrix-completion-based channel tracking technique for time correlated HBF receivers. The considered channel tracking problem is formulated as a constrained multi-objective optimization problem incorporating the low rank and group-sparse properties of the mmWave channel as well as a popular model for its time correlation. We present an efficient algorithm for this estimation problem that is based on the alternating direction method of multipliers. Comparisons of the proposed approach over representative state-of-the-art techniques showcase the relation between the channel time correlation coefficient and the amount of beam training needed for acceptable channel estimation performance.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"16 1","pages":"8698-8702"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Wideband Channel Tracking for Millimeter Wave Massive Mimo Systems with Hybrid Beamforming Reception\",\"authors\":\"G. Alexandropoulos, Evangelos Vlachos, J. Thompson\",\"doi\":\"10.1109/ICASSP40776.2020.9053440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Millimeter Wave (mmWave) massive Multiple Input Multiple Output (MIMO) channel tracking is a challenging task with Hybrid analog and digital BeamForming (HBF) reception architectures. The wireless channel can only be spatially sampled with directive analog beams, which results in lengthy training periods when beam codebooks are large. In this paper, we capitalize on a recently proposed HBF architecture enabling mmWave massive MIMO channel estimation with short beam training overhead, and present a matrix-completion-based channel tracking technique for time correlated HBF receivers. The considered channel tracking problem is formulated as a constrained multi-objective optimization problem incorporating the low rank and group-sparse properties of the mmWave channel as well as a popular model for its time correlation. We present an efficient algorithm for this estimation problem that is based on the alternating direction method of multipliers. Comparisons of the proposed approach over representative state-of-the-art techniques showcase the relation between the channel time correlation coefficient and the amount of beam training needed for acceptable channel estimation performance.\",\"PeriodicalId\":13127,\"journal\":{\"name\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"16 1\",\"pages\":\"8698-8702\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP40776.2020.9053440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wideband Channel Tracking for Millimeter Wave Massive Mimo Systems with Hybrid Beamforming Reception
Millimeter Wave (mmWave) massive Multiple Input Multiple Output (MIMO) channel tracking is a challenging task with Hybrid analog and digital BeamForming (HBF) reception architectures. The wireless channel can only be spatially sampled with directive analog beams, which results in lengthy training periods when beam codebooks are large. In this paper, we capitalize on a recently proposed HBF architecture enabling mmWave massive MIMO channel estimation with short beam training overhead, and present a matrix-completion-based channel tracking technique for time correlated HBF receivers. The considered channel tracking problem is formulated as a constrained multi-objective optimization problem incorporating the low rank and group-sparse properties of the mmWave channel as well as a popular model for its time correlation. We present an efficient algorithm for this estimation problem that is based on the alternating direction method of multipliers. Comparisons of the proposed approach over representative state-of-the-art techniques showcase the relation between the channel time correlation coefficient and the amount of beam training needed for acceptable channel estimation performance.