{"title":"甲苯丁胺改变小鼠胚胎心脏的葡萄糖转运和代谢。","authors":"I. Smoak","doi":"10.1002/TERA.1094","DOIUrl":null,"url":null,"abstract":"BACKGROUND Tolbutamide is a sulfonylurea oral hypoglycemic agent widely used for the treatment of non insulin-dependent diabetes mellitus. Tolbutamide produces dysmorphogenesis in rodent embryos and becomes concentrated in the embryonic heart after maternal oral dosing. Tolbutamide increases glucose metabolism in extra-pancreatic adult tissues, but this has not previously been examined in embryonic heart. METHODS CD-1 mouse embryos were exposed on GD 9.5 to tolbutamide (0, 100, 250, or 500 microg/ml) for 6, 12, or 24 hr in whole-embryo culture. Isolated hearts were evaluated for (3)H-2DG uptake and conversion of (14)C-glucose to (14)C-lactate. Glut-1, HKI, and GRP78 protein levels were determined by Western analysis, and Glut-1 mRNA was measured by RT-PCR. RESULTS Cardiac (3)H-2DG uptake increased after exposure to 500 microg/ml tolbutamide for 6 hr, and 100, 250, or 500 microg/ml tolbutamide for 24 hr, compared to controls. Glycolysis increased after exposure to 500 microg/ml tolbutamide for 6 or 24 hr compared to controls. Glut-1 protein levels increased in hearts exposed to 500 microg/ml tolbutamide for 12 or 24 hr, and Glut-1 mRNA increased in hearts exposed to 500 microg/ml tolbutamide for 24 hr compared to controls. HKI protein levels increased in hearts exposed to 500 microg/ml tolbutamide for 6 hr, but not 12 or 24 hr. There was no effect on GRP78 protein levels in hearts exposed to tolbutamide for 6, 12, or 24 hr. CONCLUSIONS Tolbutamide stimulates glucose uptake and metabolism in the embryonic heart, as occurs in adult extra-pancreatic tissues. Glut-1 and HKI, but not GRP78, are likely involved in tolbutamide-induced cardiac dysmorphogenesis.","PeriodicalId":22211,"journal":{"name":"Teratology","volume":"50 1","pages":"19-25"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tolbutamide alters glucose transport and metabolism in the embryonic mouse heart.\",\"authors\":\"I. Smoak\",\"doi\":\"10.1002/TERA.1094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND Tolbutamide is a sulfonylurea oral hypoglycemic agent widely used for the treatment of non insulin-dependent diabetes mellitus. Tolbutamide produces dysmorphogenesis in rodent embryos and becomes concentrated in the embryonic heart after maternal oral dosing. Tolbutamide increases glucose metabolism in extra-pancreatic adult tissues, but this has not previously been examined in embryonic heart. METHODS CD-1 mouse embryos were exposed on GD 9.5 to tolbutamide (0, 100, 250, or 500 microg/ml) for 6, 12, or 24 hr in whole-embryo culture. Isolated hearts were evaluated for (3)H-2DG uptake and conversion of (14)C-glucose to (14)C-lactate. Glut-1, HKI, and GRP78 protein levels were determined by Western analysis, and Glut-1 mRNA was measured by RT-PCR. RESULTS Cardiac (3)H-2DG uptake increased after exposure to 500 microg/ml tolbutamide for 6 hr, and 100, 250, or 500 microg/ml tolbutamide for 24 hr, compared to controls. Glycolysis increased after exposure to 500 microg/ml tolbutamide for 6 or 24 hr compared to controls. Glut-1 protein levels increased in hearts exposed to 500 microg/ml tolbutamide for 12 or 24 hr, and Glut-1 mRNA increased in hearts exposed to 500 microg/ml tolbutamide for 24 hr compared to controls. HKI protein levels increased in hearts exposed to 500 microg/ml tolbutamide for 6 hr, but not 12 or 24 hr. There was no effect on GRP78 protein levels in hearts exposed to tolbutamide for 6, 12, or 24 hr. CONCLUSIONS Tolbutamide stimulates glucose uptake and metabolism in the embryonic heart, as occurs in adult extra-pancreatic tissues. Glut-1 and HKI, but not GRP78, are likely involved in tolbutamide-induced cardiac dysmorphogenesis.\",\"PeriodicalId\":22211,\"journal\":{\"name\":\"Teratology\",\"volume\":\"50 1\",\"pages\":\"19-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teratology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/TERA.1094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teratology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/TERA.1094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tolbutamide alters glucose transport and metabolism in the embryonic mouse heart.
BACKGROUND Tolbutamide is a sulfonylurea oral hypoglycemic agent widely used for the treatment of non insulin-dependent diabetes mellitus. Tolbutamide produces dysmorphogenesis in rodent embryos and becomes concentrated in the embryonic heart after maternal oral dosing. Tolbutamide increases glucose metabolism in extra-pancreatic adult tissues, but this has not previously been examined in embryonic heart. METHODS CD-1 mouse embryos were exposed on GD 9.5 to tolbutamide (0, 100, 250, or 500 microg/ml) for 6, 12, or 24 hr in whole-embryo culture. Isolated hearts were evaluated for (3)H-2DG uptake and conversion of (14)C-glucose to (14)C-lactate. Glut-1, HKI, and GRP78 protein levels were determined by Western analysis, and Glut-1 mRNA was measured by RT-PCR. RESULTS Cardiac (3)H-2DG uptake increased after exposure to 500 microg/ml tolbutamide for 6 hr, and 100, 250, or 500 microg/ml tolbutamide for 24 hr, compared to controls. Glycolysis increased after exposure to 500 microg/ml tolbutamide for 6 or 24 hr compared to controls. Glut-1 protein levels increased in hearts exposed to 500 microg/ml tolbutamide for 12 or 24 hr, and Glut-1 mRNA increased in hearts exposed to 500 microg/ml tolbutamide for 24 hr compared to controls. HKI protein levels increased in hearts exposed to 500 microg/ml tolbutamide for 6 hr, but not 12 or 24 hr. There was no effect on GRP78 protein levels in hearts exposed to tolbutamide for 6, 12, or 24 hr. CONCLUSIONS Tolbutamide stimulates glucose uptake and metabolism in the embryonic heart, as occurs in adult extra-pancreatic tissues. Glut-1 and HKI, but not GRP78, are likely involved in tolbutamide-induced cardiac dysmorphogenesis.