线性混合模型中混合和随机限制脊估计的条件概念预测统计模型选择

M. Özkale, Özge Kuran
{"title":"线性混合模型中混合和随机限制脊估计的条件概念预测统计模型选择","authors":"M. Özkale, Özge Kuran","doi":"10.1002/cpe.7366","DOIUrl":null,"url":null,"abstract":"In this article, we characterize the mixed Cp$$ {C}_p $$ ( CMCp$$ {\\mathrm{CMC}}_p $$ ) and conditional stochastic restricted ridge Cp$$ {C}_p $$ ( CSRRCp$$ {\\mathrm{CSRRC}}_p $$ ) statistics that depend on the expected conditional Gauss discrepancy for the purpose of selecting the most appropriate model when stochastic restrictions are appeared in linear mixed models. Under the known and unknown variance components assumptions, we define two shapes of CMCp$$ {\\mathrm{CMC}}_p $$ and CSRRCp$$ {\\mathrm{CSRRC}}_p $$ statistics. Then, the article is concluded with both a Monte Carlo simulation study and a real data analysis, supporting the findings of the theoretical results on the CMCp$$ {\\mathrm{CMC}}_p $$ and CSRRCp$$ {\\mathrm{CSRRC}}_p $$ statistics.","PeriodicalId":10584,"journal":{"name":"Concurrency and Computation: Practice and Experience","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model selection via conditional conceptual predictive statistic for mixed and stochastic restricted ridge estimators in linear mixed models\",\"authors\":\"M. Özkale, Özge Kuran\",\"doi\":\"10.1002/cpe.7366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we characterize the mixed Cp$$ {C}_p $$ ( CMCp$$ {\\\\mathrm{CMC}}_p $$ ) and conditional stochastic restricted ridge Cp$$ {C}_p $$ ( CSRRCp$$ {\\\\mathrm{CSRRC}}_p $$ ) statistics that depend on the expected conditional Gauss discrepancy for the purpose of selecting the most appropriate model when stochastic restrictions are appeared in linear mixed models. Under the known and unknown variance components assumptions, we define two shapes of CMCp$$ {\\\\mathrm{CMC}}_p $$ and CSRRCp$$ {\\\\mathrm{CSRRC}}_p $$ statistics. Then, the article is concluded with both a Monte Carlo simulation study and a real data analysis, supporting the findings of the theoretical results on the CMCp$$ {\\\\mathrm{CMC}}_p $$ and CSRRCp$$ {\\\\mathrm{CSRRC}}_p $$ statistics.\",\"PeriodicalId\":10584,\"journal\":{\"name\":\"Concurrency and Computation: Practice and Experience\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrency and Computation: Practice and Experience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cpe.7366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation: Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cpe.7366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们描述了混合Cp $$ {C}_p $$ (CMCp $$ {\mathrm{CMC}}_p $$)和条件随机限制脊Cp $$ {C}_p $$ (CSRRCp $$ {\mathrm{CSRRC}}_p $$)统计量,它们依赖于预期的条件高斯差异,以便在线性混合模型中出现随机限制时选择最合适的模型。在已知和未知方差成分假设下,我们定义了CMCp $$ {\mathrm{CMC}}_p $$和CSRRCp $$ {\mathrm{CSRRC}}_p $$统计量的两种形状。然后,通过蒙特卡罗模拟研究和实际数据分析,支持CMCp $$ {\mathrm{CMC}}_p $$和CSRRCp $$ {\mathrm{CSRRC}}_p $$统计的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model selection via conditional conceptual predictive statistic for mixed and stochastic restricted ridge estimators in linear mixed models
In this article, we characterize the mixed Cp$$ {C}_p $$ ( CMCp$$ {\mathrm{CMC}}_p $$ ) and conditional stochastic restricted ridge Cp$$ {C}_p $$ ( CSRRCp$$ {\mathrm{CSRRC}}_p $$ ) statistics that depend on the expected conditional Gauss discrepancy for the purpose of selecting the most appropriate model when stochastic restrictions are appeared in linear mixed models. Under the known and unknown variance components assumptions, we define two shapes of CMCp$$ {\mathrm{CMC}}_p $$ and CSRRCp$$ {\mathrm{CSRRC}}_p $$ statistics. Then, the article is concluded with both a Monte Carlo simulation study and a real data analysis, supporting the findings of the theoretical results on the CMCp$$ {\mathrm{CMC}}_p $$ and CSRRCp$$ {\mathrm{CSRRC}}_p $$ statistics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信