光电神经网络:将多层架构映射到光电演示器上

A. Waddie, K. Symington, J. Snowdon, M. Taghizadeh
{"title":"光电神经网络:将多层架构映射到光电演示器上","authors":"A. Waddie, K. Symington, J. Snowdon, M. Taghizadeh","doi":"10.1109/CLEOE.2003.1313588","DOIUrl":null,"url":null,"abstract":"In this paper we outline some of the changes needed to implement multilayer feed-forward neural networks using the demonstrator hardware which was based on around an array of vertical cavity surface emitting lasers. Network simulations show that the neural network demonstrator hardware can be used to implement two different classes of feed-forward network, the multilayer perceptron (MLP) and radial basis function (RBF) networks. In both cases, the actual training of the networks is performed offline using hardware simulations and the weighted interconnections between neurons are fixed before application to the optoelectronic hardware.","PeriodicalId":6370,"journal":{"name":"2003 Conference on Lasers and Electro-Optics Europe (CLEO/Europe 2003) (IEEE Cat. No.03TH8666)","volume":"110 1","pages":"526-"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optoelectronic neural networks: mapping multilayer architectures on to an optoelectronic demonstrator\",\"authors\":\"A. Waddie, K. Symington, J. Snowdon, M. Taghizadeh\",\"doi\":\"10.1109/CLEOE.2003.1313588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we outline some of the changes needed to implement multilayer feed-forward neural networks using the demonstrator hardware which was based on around an array of vertical cavity surface emitting lasers. Network simulations show that the neural network demonstrator hardware can be used to implement two different classes of feed-forward network, the multilayer perceptron (MLP) and radial basis function (RBF) networks. In both cases, the actual training of the networks is performed offline using hardware simulations and the weighted interconnections between neurons are fixed before application to the optoelectronic hardware.\",\"PeriodicalId\":6370,\"journal\":{\"name\":\"2003 Conference on Lasers and Electro-Optics Europe (CLEO/Europe 2003) (IEEE Cat. No.03TH8666)\",\"volume\":\"110 1\",\"pages\":\"526-\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 Conference on Lasers and Electro-Optics Europe (CLEO/Europe 2003) (IEEE Cat. No.03TH8666)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEOE.2003.1313588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 Conference on Lasers and Electro-Optics Europe (CLEO/Europe 2003) (IEEE Cat. No.03TH8666)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE.2003.1313588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们概述了使用基于垂直腔面发射激光器阵列的演示硬件实现多层前馈神经网络所需的一些变化。网络仿真表明,神经网络演示硬件可以实现两种不同类型的前馈网络,即多层感知器(MLP)和径向基函数(RBF)网络。在这两种情况下,网络的实际训练都是通过硬件模拟离线进行的,并且神经元之间的加权互连在应用于光电硬件之前是固定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optoelectronic neural networks: mapping multilayer architectures on to an optoelectronic demonstrator
In this paper we outline some of the changes needed to implement multilayer feed-forward neural networks using the demonstrator hardware which was based on around an array of vertical cavity surface emitting lasers. Network simulations show that the neural network demonstrator hardware can be used to implement two different classes of feed-forward network, the multilayer perceptron (MLP) and radial basis function (RBF) networks. In both cases, the actual training of the networks is performed offline using hardware simulations and the weighted interconnections between neurons are fixed before application to the optoelectronic hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信