关于ALG *流形的Hodge理论

IF 1.2 1区 数学 Q1 MATHEMATICS
Gao Chen, Jeff A. Viaclovsky, Ruobing Zhang
{"title":"关于ALG *流形的Hodge理论","authors":"Gao Chen, Jeff A. Viaclovsky, Ruobing Zhang","doi":"10.1515/crelle-2023-0016","DOIUrl":null,"url":null,"abstract":"Abstract We develop a Fredholm theory for the Hodge Laplacian in weighted spaces on ALG∗ manifolds in dimension four. We then give several applications of this theory. First, we show the existence of harmonic functions with prescribed asymptotics at infinity. A corollary of this is a non-existence result for ALG∗ manifolds with non-negative Ricci curvature having group Γ = { e } \\Gamma=\\{e\\} at infinity. Next, we prove a Hodge decomposition for the first de Rham cohomology group of an ALG∗ manifold. A corollary of this is vanishing of the first Betti number for any ALG∗ manifold with non-negative Ricci curvature. Another application of our analysis is to determine the optimal order of ALG∗ gravitational instantons.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"6 1","pages":"189 - 227"},"PeriodicalIF":1.2000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hodge theory on ALG∗ manifolds\",\"authors\":\"Gao Chen, Jeff A. Viaclovsky, Ruobing Zhang\",\"doi\":\"10.1515/crelle-2023-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We develop a Fredholm theory for the Hodge Laplacian in weighted spaces on ALG∗ manifolds in dimension four. We then give several applications of this theory. First, we show the existence of harmonic functions with prescribed asymptotics at infinity. A corollary of this is a non-existence result for ALG∗ manifolds with non-negative Ricci curvature having group Γ = { e } \\\\Gamma=\\\\{e\\\\} at infinity. Next, we prove a Hodge decomposition for the first de Rham cohomology group of an ALG∗ manifold. A corollary of this is vanishing of the first Betti number for any ALG∗ manifold with non-negative Ricci curvature. Another application of our analysis is to determine the optimal order of ALG∗ gravitational instantons.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":\"6 1\",\"pages\":\"189 - 227\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2023-0016\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0016","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在四维ALG *流形上,给出了加权空间中霍奇拉普拉斯算子的Fredholm理论。然后我们给出了这一理论的几个应用。首先,我们证明了调和函数在无穷远处具有规定渐近性的存在性。这个的一个推论是具有非负Ricci曲率的ALG∗流形在无穷远处群Γ = {e} \Gamma=\{e\}的不存在性结果。其次,我们证明了ALG∗流形的第一个de Rham上同调群的Hodge分解。这一结论的一个推论是对于任何具有非负Ricci曲率的ALG *流形,第一Betti数的消失。我们的分析的另一个应用是确定ALG *引力瞬子的最佳顺序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hodge theory on ALG∗ manifolds
Abstract We develop a Fredholm theory for the Hodge Laplacian in weighted spaces on ALG∗ manifolds in dimension four. We then give several applications of this theory. First, we show the existence of harmonic functions with prescribed asymptotics at infinity. A corollary of this is a non-existence result for ALG∗ manifolds with non-negative Ricci curvature having group Γ = { e } \Gamma=\{e\} at infinity. Next, we prove a Hodge decomposition for the first de Rham cohomology group of an ALG∗ manifold. A corollary of this is vanishing of the first Betti number for any ALG∗ manifold with non-negative Ricci curvature. Another application of our analysis is to determine the optimal order of ALG∗ gravitational instantons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信