{"title":"基于hmm的语音识别器的判别状态加权","authors":"O. Kwon, C. Un","doi":"10.1109/APCAS.1996.569266","DOIUrl":null,"url":null,"abstract":"Assuming that the score of a speech utterance is a weighted sum of hidden Markov model (HMM) log state-likelihoods, we propose a new method of finding discriminative state-weights recursively using the generalized probabilistic descent method. Experimental results showed that the recognizers with phoneme-based and word-based state-weights achieved 20% and 50% decrease in word error rate, respectively, for isolated word recognition, and 5% decrease for continuous speech recognition. Our approach yields recognition accuracies comparable to those of the previous approaches for continuous speech recognition, but it is much simpler to implement than others.","PeriodicalId":20507,"journal":{"name":"Proceedings of APCCAS'96 - Asia Pacific Conference on Circuits and Systems","volume":"146 1","pages":"251-254"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discriminative state-weighting of HMM-based speech recognizers\",\"authors\":\"O. Kwon, C. Un\",\"doi\":\"10.1109/APCAS.1996.569266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assuming that the score of a speech utterance is a weighted sum of hidden Markov model (HMM) log state-likelihoods, we propose a new method of finding discriminative state-weights recursively using the generalized probabilistic descent method. Experimental results showed that the recognizers with phoneme-based and word-based state-weights achieved 20% and 50% decrease in word error rate, respectively, for isolated word recognition, and 5% decrease for continuous speech recognition. Our approach yields recognition accuracies comparable to those of the previous approaches for continuous speech recognition, but it is much simpler to implement than others.\",\"PeriodicalId\":20507,\"journal\":{\"name\":\"Proceedings of APCCAS'96 - Asia Pacific Conference on Circuits and Systems\",\"volume\":\"146 1\",\"pages\":\"251-254\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of APCCAS'96 - Asia Pacific Conference on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCAS.1996.569266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of APCCAS'96 - Asia Pacific Conference on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCAS.1996.569266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discriminative state-weighting of HMM-based speech recognizers
Assuming that the score of a speech utterance is a weighted sum of hidden Markov model (HMM) log state-likelihoods, we propose a new method of finding discriminative state-weights recursively using the generalized probabilistic descent method. Experimental results showed that the recognizers with phoneme-based and word-based state-weights achieved 20% and 50% decrease in word error rate, respectively, for isolated word recognition, and 5% decrease for continuous speech recognition. Our approach yields recognition accuracies comparable to those of the previous approaches for continuous speech recognition, but it is much simpler to implement than others.