{"title":"指数级数的柯西-哈达玛定理","authors":"S. G. Merzlyakov","doi":"10.13108/2014-6-1-71","DOIUrl":null,"url":null,"abstract":"In this paper we study the connection between the growth of coefficients of an exponentials series with its convergence domain in finite-dimensional real and complex spaces. Among the first results of the subject is the well-known Cauchy-Hadamard formula. We obtain exact conditions on the exponentials and a convex region in which there is a generalization of the Cauchy-Hadamard theorem. To the sequence of coefficients of exponential series we associate a space of sequences forming a commutative ring with unit. A study of the properties of this ring allows us to obtain the results on solvability of non- homogeneous systems of convolution equations.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"229 1","pages":"71-79"},"PeriodicalIF":0.5000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CAUCHY-HADAMARD THEOREM FOR EXPONENTIAL SERIES\",\"authors\":\"S. G. Merzlyakov\",\"doi\":\"10.13108/2014-6-1-71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the connection between the growth of coefficients of an exponentials series with its convergence domain in finite-dimensional real and complex spaces. Among the first results of the subject is the well-known Cauchy-Hadamard formula. We obtain exact conditions on the exponentials and a convex region in which there is a generalization of the Cauchy-Hadamard theorem. To the sequence of coefficients of exponential series we associate a space of sequences forming a commutative ring with unit. A study of the properties of this ring allows us to obtain the results on solvability of non- homogeneous systems of convolution equations.\",\"PeriodicalId\":43644,\"journal\":{\"name\":\"Ufa Mathematical Journal\",\"volume\":\"229 1\",\"pages\":\"71-79\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ufa Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13108/2014-6-1-71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2014-6-1-71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper we study the connection between the growth of coefficients of an exponentials series with its convergence domain in finite-dimensional real and complex spaces. Among the first results of the subject is the well-known Cauchy-Hadamard formula. We obtain exact conditions on the exponentials and a convex region in which there is a generalization of the Cauchy-Hadamard theorem. To the sequence of coefficients of exponential series we associate a space of sequences forming a commutative ring with unit. A study of the properties of this ring allows us to obtain the results on solvability of non- homogeneous systems of convolution equations.