非齐次时间分数阶Schrödinger方程的高精度差分新方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zihao Tian, Yanhua Cao, Xiaozhong Yang
{"title":"非齐次时间分数阶Schrödinger方程的高精度差分新方法","authors":"Zihao Tian, Yanhua Cao, Xiaozhong Yang","doi":"10.1080/00207160.2023.2226254","DOIUrl":null,"url":null,"abstract":"The fractional Schrödinger equation is an important fractional nonlinear evolution equation, and the study of its numerical solution has profound scientific meaning and wide application prospects. This paper proposes a new high-accuracy difference method for nonhomogeneous time-fractional Schrödinger equation (TFSE). The Caputo time-fractional derivative is discretized by high-order formula and the fourth-order compact difference approximation is applied for spatial discretization. A new nonlinear compact difference scheme with temporal second-order and spatial fourth-order accuracy is constructed, which is solved by the efficient linearized iterative algorithm. The unconditional stability and convergence are analysed by the energy method. The unique existence and maximum-norm estimate of new compact difference scheme solution are obtained. Theoretical analysis shows that the convergence accuracy of new compact difference scheme is with the strong regularity assumption. Numerical experiments verify theoretical results and indicate that the proposed method is an efficient numerical method for solving TFSE.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new high-accuracy difference method for nonhomogeneous time-fractional Schrödinger equation\",\"authors\":\"Zihao Tian, Yanhua Cao, Xiaozhong Yang\",\"doi\":\"10.1080/00207160.2023.2226254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fractional Schrödinger equation is an important fractional nonlinear evolution equation, and the study of its numerical solution has profound scientific meaning and wide application prospects. This paper proposes a new high-accuracy difference method for nonhomogeneous time-fractional Schrödinger equation (TFSE). The Caputo time-fractional derivative is discretized by high-order formula and the fourth-order compact difference approximation is applied for spatial discretization. A new nonlinear compact difference scheme with temporal second-order and spatial fourth-order accuracy is constructed, which is solved by the efficient linearized iterative algorithm. The unconditional stability and convergence are analysed by the energy method. The unique existence and maximum-norm estimate of new compact difference scheme solution are obtained. Theoretical analysis shows that the convergence accuracy of new compact difference scheme is with the strong regularity assumption. Numerical experiments verify theoretical results and indicate that the proposed method is an efficient numerical method for solving TFSE.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00207160.2023.2226254\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00207160.2023.2226254","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

分数阶Schrödinger方程是一种重要的分数阶非线性演化方程,对其数值解的研究具有深刻的科学意义和广阔的应用前景。本文提出了求解非齐次时间分数阶Schrödinger方程(TFSE)的高精度差分方法。采用高阶公式对卡普托时间分数阶导数进行离散化,采用四阶紧致差分近似进行空间离散化。构造了一种新的具有时间二阶精度和空间四阶精度的非线性紧致差分格式,并用高效的线性化迭代算法求解。用能量法分析了该方法的无条件稳定性和收敛性。得到了新的紧差分格式解的唯一存在性和最大范数估计。理论分析表明,新紧差分格式的收敛精度符合强正则性假设。数值实验验证了理论结果,表明所提出的方法是一种有效的求解TFSE的数值方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new high-accuracy difference method for nonhomogeneous time-fractional Schrödinger equation
The fractional Schrödinger equation is an important fractional nonlinear evolution equation, and the study of its numerical solution has profound scientific meaning and wide application prospects. This paper proposes a new high-accuracy difference method for nonhomogeneous time-fractional Schrödinger equation (TFSE). The Caputo time-fractional derivative is discretized by high-order formula and the fourth-order compact difference approximation is applied for spatial discretization. A new nonlinear compact difference scheme with temporal second-order and spatial fourth-order accuracy is constructed, which is solved by the efficient linearized iterative algorithm. The unconditional stability and convergence are analysed by the energy method. The unique existence and maximum-norm estimate of new compact difference scheme solution are obtained. Theoretical analysis shows that the convergence accuracy of new compact difference scheme is with the strong regularity assumption. Numerical experiments verify theoretical results and indicate that the proposed method is an efficient numerical method for solving TFSE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信