素数表示有10个未知数的多项式-介绍。第二部分

IF 1 Q1 MATHEMATICS
Karol Pąk
{"title":"素数表示有10个未知数的多项式-介绍。第二部分","authors":"Karol Pąk","doi":"10.2478/forma-2022-0020","DOIUrl":null,"url":null,"abstract":"Summary In our previous work [7] we prove that the set of prime numbers is diophantine using the 26-variable polynomial proposed in [4]. In this paper, we focus on the reduction of the number of variables to 10 and it is the smallest variables number known today [5], [10]. Using the Mizar [3], [2] system, we formalize the first step in this direction by proving Theorem 1 [5] formulated as follows: Let k ∈ ℕ. Then k is prime if and only if there exists f, i, j, m, u ∈ ℕ+, r, s, t ∈ ℕ unknowns such that DFI is square   ∧ (M2-1)S2+1  is  square  ∧((MU)2-1)T2+1  is  square∧(4f2-1)(r-mSTU)2+4u2S2T2<8fuST(r-mSTU)FL|(H-C)Z+F(f+1)Q+F(k+1)((W2-1)Su-W2u2+1) \\matrix{ {DFI\\,is\\,square\\,\\,\\,{\\Lambda}\\,\\left( {{M^2} - 1} \\right){S^2} + 1\\,\\,is\\,\\,square\\,\\,{\\Lambda}} \\hfill \\cr {\\left( {{{\\left( {MU} \\right)}^2} - 1} \\right){T^2} + 1\\,\\,is\\,\\,square{\\Lambda}} \\hfill \\cr {\\left( {4{f^2} - 1} \\right){{\\left( {r - mSTU} \\right)}^2} + 4{u^2}{S^2}{T^2} < 8fuST\\left( {r - mSTU} \\right)} \\hfill \\cr {FL|\\left( {H - C} \\right)Z + F\\left( {f + 1} \\right)Q + F\\left( {k + 1} \\right)\\left( {\\left( {{W^2} - 1} \\right)Su - {W^2}{u^2} + 1} \\right)} \\hfill \\cr } where auxiliary variables A − I, L, M, S − W, Q ∈ ℤ are simply abbreviations defined as follows W = 100fk(k + 1), U = 100u3W 3 + 1, M = 100mUW + 1, S = (M −1)s+k+1, T = (MU −1)t+W −k+1, Q = 2MW −W 2−1, L = (k+1)Q, A = M(U +1), B = W +1, C = r +W +1, D = (A2 −1)C2 +1, E = 2iC2LD, F = (A2 −1)E2 +1, G = A+F (F −A), H = B+2(j −1)C, I = (G2 −1)H2 +1. It is easily see that (0.1) uses 8 unknowns explicitly along with five implicit one for each diophantine relationship: is square, inequality, and divisibility. Together with k this gives a total of 14 variables. This work has been partially presented in [8].","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prime Representing Polynomial with 10 Unknowns – Introduction. Part II\",\"authors\":\"Karol Pąk\",\"doi\":\"10.2478/forma-2022-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary In our previous work [7] we prove that the set of prime numbers is diophantine using the 26-variable polynomial proposed in [4]. In this paper, we focus on the reduction of the number of variables to 10 and it is the smallest variables number known today [5], [10]. Using the Mizar [3], [2] system, we formalize the first step in this direction by proving Theorem 1 [5] formulated as follows: Let k ∈ ℕ. Then k is prime if and only if there exists f, i, j, m, u ∈ ℕ+, r, s, t ∈ ℕ unknowns such that DFI is square   ∧ (M2-1)S2+1  is  square  ∧((MU)2-1)T2+1  is  square∧(4f2-1)(r-mSTU)2+4u2S2T2<8fuST(r-mSTU)FL|(H-C)Z+F(f+1)Q+F(k+1)((W2-1)Su-W2u2+1) \\\\matrix{ {DFI\\\\,is\\\\,square\\\\,\\\\,\\\\,{\\\\Lambda}\\\\,\\\\left( {{M^2} - 1} \\\\right){S^2} + 1\\\\,\\\\,is\\\\,\\\\,square\\\\,\\\\,{\\\\Lambda}} \\\\hfill \\\\cr {\\\\left( {{{\\\\left( {MU} \\\\right)}^2} - 1} \\\\right){T^2} + 1\\\\,\\\\,is\\\\,\\\\,square{\\\\Lambda}} \\\\hfill \\\\cr {\\\\left( {4{f^2} - 1} \\\\right){{\\\\left( {r - mSTU} \\\\right)}^2} + 4{u^2}{S^2}{T^2} < 8fuST\\\\left( {r - mSTU} \\\\right)} \\\\hfill \\\\cr {FL|\\\\left( {H - C} \\\\right)Z + F\\\\left( {f + 1} \\\\right)Q + F\\\\left( {k + 1} \\\\right)\\\\left( {\\\\left( {{W^2} - 1} \\\\right)Su - {W^2}{u^2} + 1} \\\\right)} \\\\hfill \\\\cr } where auxiliary variables A − I, L, M, S − W, Q ∈ ℤ are simply abbreviations defined as follows W = 100fk(k + 1), U = 100u3W 3 + 1, M = 100mUW + 1, S = (M −1)s+k+1, T = (MU −1)t+W −k+1, Q = 2MW −W 2−1, L = (k+1)Q, A = M(U +1), B = W +1, C = r +W +1, D = (A2 −1)C2 +1, E = 2iC2LD, F = (A2 −1)E2 +1, G = A+F (F −A), H = B+2(j −1)C, I = (G2 −1)H2 +1. It is easily see that (0.1) uses 8 unknowns explicitly along with five implicit one for each diophantine relationship: is square, inequality, and divisibility. Together with k this gives a total of 14 variables. This work has been partially presented in [8].\",\"PeriodicalId\":42667,\"journal\":{\"name\":\"Formalized Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formalized Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/forma-2022-0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2022-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在我们之前的工作[7]中,我们使用[4]中提出的26变量多项式证明了素数集合是丢番图的。在本文中,我们关注的是将变量数减少到10,这是目前已知的最小的变量数[5],[10]。使用Mizar[3],[2]系统,我们通过证明定理1[5]形式化了这个方向的第一步,公式如下:那么k是素数当且仅当存在f, i, j, m, u∈_1 +,r, s, t∈_1未知数,使得DFI是平方∧(M2-1)S2+1是平方∧((MU)2-1)T2+1是平方∧(4f2-1)(r- mstu)2+4u2S2T2<8fuST(r- mstu)FL|(H-C)Z+ f (f+1)Q+ f (k+1)((W -1)Su-W2u2+1) \matrix{ {DFI\,is\,square\,\,\,{\Lambda}\,\left( {{M^2} - 1} \right){S^2} + 1\,\,is\,\,square\,\,{\Lambda}} \hfill \cr {\left( {{{\left( {MU} \right)}^2} - 1} \right){T^2} + 1\,\,is\,\,square{\Lambda}} \hfill \cr {\left( {4{f^2} - 1} \right){{\left( {r - mSTU} \right)}^2} + 4{u^2}{S^2}{T^2} < 8fuST\left( {r - mSTU} \right)} \hfill \cr {FL|\left( {H - C} \right)Z + F\left( {f + 1} \right)Q + F\left( {k + 1} \right)\left( {\left( {{W^2} - 1} \right)Su - {W^2}{u^2} + 1} \right)} \hfill \cr }其中辅助变量A−i, L, m, s -W, Q∈0是简单的缩写定义如下W = 100fk(k +1), u = 100u3W 3 +1, m = 100mUW +1, s = (m -1) s+k+1, t = (MU -1) t+W - k+1, Q = 2MW -W2 -1, L = (k+1)Q = m (u +1), B = W +1,C = r +W +1, D = (A2−1)C2 +1, E = 2iC2LD, F = (A2−1)E2 +1, G = A+F (F−A), H = B+2(j−1)C, I = (G2−1)H2 +1。很容易看出,(0.1)明确地使用了8个未知数和5个隐式的未知数,用于每个丢芬图关系:平方、不等式和可除性。加上k,总共有14个变量。这项工作在[8]中有部分介绍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prime Representing Polynomial with 10 Unknowns – Introduction. Part II
Summary In our previous work [7] we prove that the set of prime numbers is diophantine using the 26-variable polynomial proposed in [4]. In this paper, we focus on the reduction of the number of variables to 10 and it is the smallest variables number known today [5], [10]. Using the Mizar [3], [2] system, we formalize the first step in this direction by proving Theorem 1 [5] formulated as follows: Let k ∈ ℕ. Then k is prime if and only if there exists f, i, j, m, u ∈ ℕ+, r, s, t ∈ ℕ unknowns such that DFI is square   ∧ (M2-1)S2+1  is  square  ∧((MU)2-1)T2+1  is  square∧(4f2-1)(r-mSTU)2+4u2S2T2<8fuST(r-mSTU)FL|(H-C)Z+F(f+1)Q+F(k+1)((W2-1)Su-W2u2+1) \matrix{ {DFI\,is\,square\,\,\,{\Lambda}\,\left( {{M^2} - 1} \right){S^2} + 1\,\,is\,\,square\,\,{\Lambda}} \hfill \cr {\left( {{{\left( {MU} \right)}^2} - 1} \right){T^2} + 1\,\,is\,\,square{\Lambda}} \hfill \cr {\left( {4{f^2} - 1} \right){{\left( {r - mSTU} \right)}^2} + 4{u^2}{S^2}{T^2} < 8fuST\left( {r - mSTU} \right)} \hfill \cr {FL|\left( {H - C} \right)Z + F\left( {f + 1} \right)Q + F\left( {k + 1} \right)\left( {\left( {{W^2} - 1} \right)Su - {W^2}{u^2} + 1} \right)} \hfill \cr } where auxiliary variables A − I, L, M, S − W, Q ∈ ℤ are simply abbreviations defined as follows W = 100fk(k + 1), U = 100u3W 3 + 1, M = 100mUW + 1, S = (M −1)s+k+1, T = (MU −1)t+W −k+1, Q = 2MW −W 2−1, L = (k+1)Q, A = M(U +1), B = W +1, C = r +W +1, D = (A2 −1)C2 +1, E = 2iC2LD, F = (A2 −1)E2 +1, G = A+F (F −A), H = B+2(j −1)C, I = (G2 −1)H2 +1. It is easily see that (0.1) uses 8 unknowns explicitly along with five implicit one for each diophantine relationship: is square, inequality, and divisibility. Together with k this gives a total of 14 variables. This work has been partially presented in [8].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Formalized Mathematics
Formalized Mathematics MATHEMATICS-
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊介绍: Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信