o-极小构造中的Lipschitz层理

IF 1.3 1区 数学 Q1 MATHEMATICS
Nhan Nguyen, G. Valette
{"title":"o-极小构造中的Lipschitz层理","authors":"Nhan Nguyen, G. Valette","doi":"10.24033/ASENS.2286","DOIUrl":null,"url":null,"abstract":"This paper establishes existence of Lipschitz stratifications in the sense of Mostowski for sets which are definable in a polynomially bounded o-minimal structure. We also improve L. van den Dries and P. Speissegger’s preparation theorem for definable functions.","PeriodicalId":50971,"journal":{"name":"Annales Scientifiques De L Ecole Normale Superieure","volume":"218 1","pages":"399-421"},"PeriodicalIF":1.3000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Lipschitz stratifications in o-minimal structures\",\"authors\":\"Nhan Nguyen, G. Valette\",\"doi\":\"10.24033/ASENS.2286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper establishes existence of Lipschitz stratifications in the sense of Mostowski for sets which are definable in a polynomially bounded o-minimal structure. We also improve L. van den Dries and P. Speissegger’s preparation theorem for definable functions.\",\"PeriodicalId\":50971,\"journal\":{\"name\":\"Annales Scientifiques De L Ecole Normale Superieure\",\"volume\":\"218 1\",\"pages\":\"399-421\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Scientifiques De L Ecole Normale Superieure\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.24033/ASENS.2286\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Scientifiques De L Ecole Normale Superieure","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/ASENS.2286","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 19

摘要

本文建立了在多项式有界o最小结构上可定义的集合在Mostowski意义上的Lipschitz分层的存在性。改进了L. van den Dries和P. Speissegger关于可定义函数的准备定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lipschitz stratifications in o-minimal structures
This paper establishes existence of Lipschitz stratifications in the sense of Mostowski for sets which are definable in a polynomially bounded o-minimal structure. We also improve L. van den Dries and P. Speissegger’s preparation theorem for definable functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Annales scientifiques de l''École normale supérieure were founded in 1864 by Louis Pasteur. The journal dealt with subjects touching on Physics, Chemistry and Natural Sciences. Around the turn of the century, it was decided that the journal should be devoted to Mathematics. Today, the Annales are open to all fields of mathematics. The Editorial Board, with the help of referees, selects articles which are mathematically very substantial. The Journal insists on maintaining a tradition of clarity and rigour in the exposition. The Annales scientifiques de l''École normale supérieures have been published by Gauthier-Villars unto 1997, then by Elsevier from 1999 to 2007. Since January 2008, they are published by the Société Mathématique de France.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信