涉及分数阶拉普拉斯的Kirchhoff问题正解的存在性

Pub Date : 2015-10-29 DOI:10.4171/ZAA/1547
B. Ge, Chao Zhang
{"title":"涉及分数阶拉普拉斯的Kirchhoff问题正解的存在性","authors":"B. Ge, Chao Zhang","doi":"10.4171/ZAA/1547","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to establish the existence of a positive solution to the following fractional Kirchhoff-type problem ( 1 + λ ∫ RN (∣∣(−∆)α2 u(x)∣∣2 + V (x)u2) dx)[(−∆)αu+ V (x)u] = f(u) in R , where N ≥ 2, λ ≥ 0 is a parameter, α ∈ (0, 1), (−∆)α stands for the fractional Laplacian, f ∈ C(R+,R+). Using a variational method combined with suitable truncation techniques, we obtain the existence of at least one positive solution without compactness conditions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Existence of a positive solution to Kirchhoff problems involving the fractional Laplacian\",\"authors\":\"B. Ge, Chao Zhang\",\"doi\":\"10.4171/ZAA/1547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this paper is to establish the existence of a positive solution to the following fractional Kirchhoff-type problem ( 1 + λ ∫ RN (∣∣(−∆)α2 u(x)∣∣2 + V (x)u2) dx)[(−∆)αu+ V (x)u] = f(u) in R , where N ≥ 2, λ ≥ 0 is a parameter, α ∈ (0, 1), (−∆)α stands for the fractional Laplacian, f ∈ C(R+,R+). Using a variational method combined with suitable truncation techniques, we obtain the existence of at least one positive solution without compactness conditions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ZAA/1547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ZAA/1547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文的目的是建立以下分数阶kirchhoff型问题(1 + λ∫RN(∣∣(-∆)α 2u (x)∣∣2 + V (x)u2) dx)[(-∆)αu+ V (x)u] = f(u)在R中的正解的存在性,其中N≥2,λ≥0是参数,α∈(0,1),(-∆)α表示分数阶拉普拉斯算子,f∈C(R+,R+)。利用变分方法结合适当的截断技术,得到了在不紧性条件下至少有一个正解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Existence of a positive solution to Kirchhoff problems involving the fractional Laplacian
The goal of this paper is to establish the existence of a positive solution to the following fractional Kirchhoff-type problem ( 1 + λ ∫ RN (∣∣(−∆)α2 u(x)∣∣2 + V (x)u2) dx)[(−∆)αu+ V (x)u] = f(u) in R , where N ≥ 2, λ ≥ 0 is a parameter, α ∈ (0, 1), (−∆)α stands for the fractional Laplacian, f ∈ C(R+,R+). Using a variational method combined with suitable truncation techniques, we obtain the existence of at least one positive solution without compactness conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信