Caputo分数阶Volterra-Fredholm积分微分方程的唯一性和稳定性结果

IF 0.4 Q4 MATHEMATICS
Ahmed A. Hamoud
{"title":"Caputo分数阶Volterra-Fredholm积分微分方程的唯一性和稳定性结果","authors":"Ahmed A. Hamoud","doi":"10.17516/1997-1397-2021-14-3-313-325","DOIUrl":null,"url":null,"abstract":"In this paper, we established some new results concerning the uniqueness and Ulam’s stability results of the solutions of iterative nonlinear Volterra-Fredholm integro-differential equations subject to the boundary conditions. The fractional derivatives are considered in the Caputo sense. These new results are obtained by applying the Gronwall–Bellman’s inequality and the Banach contraction fixed point theorem. An illustrative example is included to demonstrate the efficiency and reliability of our results","PeriodicalId":43965,"journal":{"name":"Journal of Siberian Federal University-Mathematics & Physics","volume":"119 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Uniqueness and Stability Results for Caputo Fractional Volterra-Fredholm Integro-Differential Equations\",\"authors\":\"Ahmed A. Hamoud\",\"doi\":\"10.17516/1997-1397-2021-14-3-313-325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we established some new results concerning the uniqueness and Ulam’s stability results of the solutions of iterative nonlinear Volterra-Fredholm integro-differential equations subject to the boundary conditions. The fractional derivatives are considered in the Caputo sense. These new results are obtained by applying the Gronwall–Bellman’s inequality and the Banach contraction fixed point theorem. An illustrative example is included to demonstrate the efficiency and reliability of our results\",\"PeriodicalId\":43965,\"journal\":{\"name\":\"Journal of Siberian Federal University-Mathematics & Physics\",\"volume\":\"119 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University-Mathematics & Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17516/1997-1397-2021-14-3-313-325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University-Mathematics & Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2021-14-3-313-325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

本文建立了具有边界条件的迭代非线性Volterra-Fredholm积分微分方程解的唯一性和Ulam稳定性的一些新结果。分数阶导数是在卡普托意义上考虑的。这些新结果是应用Gronwall-Bellman不等式和Banach收缩不动点定理得到的。最后通过一个实例说明了所得结果的有效性和可靠性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniqueness and Stability Results for Caputo Fractional Volterra-Fredholm Integro-Differential Equations
In this paper, we established some new results concerning the uniqueness and Ulam’s stability results of the solutions of iterative nonlinear Volterra-Fredholm integro-differential equations subject to the boundary conditions. The fractional derivatives are considered in the Caputo sense. These new results are obtained by applying the Gronwall–Bellman’s inequality and the Banach contraction fixed point theorem. An illustrative example is included to demonstrate the efficiency and reliability of our results
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
26
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信