{"title":"基于随机惯性权值的混合差分进化与粒子群优化算法","authors":"Meijin Lin, Zhenyu Wang, Fei Wang","doi":"10.1109/YAC.2019.8787698","DOIUrl":null,"url":null,"abstract":"A new hybrid differential evolution and particle swarm optimization algorithm called RWDEPSO is proposed, which combines the advantages of particle swarm optimization (PSO) with fast convergence speed and differential evolution (DE) with high search accuracy. In the new algorithm, the random inertia weight is introduced to strengthen the global exploration ability and local exploition ability of the PSO optimization process. Then, the optimized individuals of PSO and DE are cross-operated to generate new individuals, which inherit the dominant characteristics of both algorithms. Comparing with the simulations of the other intelligent algorithms in six typical Benchmark functions, the results show that the proposed algorithm RWDEPSO has faster convergence speed and stronger global research ability.","PeriodicalId":6669,"journal":{"name":"2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","volume":"20 1","pages":"411-414"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Hybrid Differential Evolution and Particle Swarm Optimization Algorithm Based on Random Inertia Weight\",\"authors\":\"Meijin Lin, Zhenyu Wang, Fei Wang\",\"doi\":\"10.1109/YAC.2019.8787698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new hybrid differential evolution and particle swarm optimization algorithm called RWDEPSO is proposed, which combines the advantages of particle swarm optimization (PSO) with fast convergence speed and differential evolution (DE) with high search accuracy. In the new algorithm, the random inertia weight is introduced to strengthen the global exploration ability and local exploition ability of the PSO optimization process. Then, the optimized individuals of PSO and DE are cross-operated to generate new individuals, which inherit the dominant characteristics of both algorithms. Comparing with the simulations of the other intelligent algorithms in six typical Benchmark functions, the results show that the proposed algorithm RWDEPSO has faster convergence speed and stronger global research ability.\",\"PeriodicalId\":6669,\"journal\":{\"name\":\"2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)\",\"volume\":\"20 1\",\"pages\":\"411-414\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/YAC.2019.8787698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YAC.2019.8787698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid Differential Evolution and Particle Swarm Optimization Algorithm Based on Random Inertia Weight
A new hybrid differential evolution and particle swarm optimization algorithm called RWDEPSO is proposed, which combines the advantages of particle swarm optimization (PSO) with fast convergence speed and differential evolution (DE) with high search accuracy. In the new algorithm, the random inertia weight is introduced to strengthen the global exploration ability and local exploition ability of the PSO optimization process. Then, the optimized individuals of PSO and DE are cross-operated to generate new individuals, which inherit the dominant characteristics of both algorithms. Comparing with the simulations of the other intelligent algorithms in six typical Benchmark functions, the results show that the proposed algorithm RWDEPSO has faster convergence speed and stronger global research ability.