参数系统上具有网络不变量的可验证分层协议

Opeoluwa Matthews, Jesse D. Bingham, Daniel J. Sorin
{"title":"参数系统上具有网络不变量的可验证分层协议","authors":"Opeoluwa Matthews, Jesse D. Bingham, Daniel J. Sorin","doi":"10.1109/FMCAD.2016.7886667","DOIUrl":null,"url":null,"abstract":"We present Neo, a framework for designing pre-verified protocol components that can be instantiated and connected in an arbitrarily large hierarchy (tree), with a guarantee that the whole system satisfies a given safety property. We employ the idea of network invariants to handle correctness for arbitrary depths in the hierarchy. Orthogonally, we leverage a parameterized model checker (Cubicle) to allow for a parametric number of children at each internal node of the tree. We believe this is the first time these two distinct dimensions of configuration have been together tackled in a verification approach, and also the first time a proof of an observational preorder (as required by network invariants) has been formulated inside a parametric model checker. Aside from the natural up/down communication between a child and a parent, we allow for peer-to-peer communication, since many real protocol optimizations rely on this paradigm. The paper details the Neo theory, which is built upon the Input-Output Automata formalism, and demonstrates the approach on an example hierarchical cache coherence protocol.","PeriodicalId":6479,"journal":{"name":"2016 Formal Methods in Computer-Aided Design (FMCAD)","volume":"30 1","pages":"101-108"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Verifiable hierarchical protocols with network invariants on parametric systems\",\"authors\":\"Opeoluwa Matthews, Jesse D. Bingham, Daniel J. Sorin\",\"doi\":\"10.1109/FMCAD.2016.7886667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Neo, a framework for designing pre-verified protocol components that can be instantiated and connected in an arbitrarily large hierarchy (tree), with a guarantee that the whole system satisfies a given safety property. We employ the idea of network invariants to handle correctness for arbitrary depths in the hierarchy. Orthogonally, we leverage a parameterized model checker (Cubicle) to allow for a parametric number of children at each internal node of the tree. We believe this is the first time these two distinct dimensions of configuration have been together tackled in a verification approach, and also the first time a proof of an observational preorder (as required by network invariants) has been formulated inside a parametric model checker. Aside from the natural up/down communication between a child and a parent, we allow for peer-to-peer communication, since many real protocol optimizations rely on this paradigm. The paper details the Neo theory, which is built upon the Input-Output Automata formalism, and demonstrates the approach on an example hierarchical cache coherence protocol.\",\"PeriodicalId\":6479,\"journal\":{\"name\":\"2016 Formal Methods in Computer-Aided Design (FMCAD)\",\"volume\":\"30 1\",\"pages\":\"101-108\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Formal Methods in Computer-Aided Design (FMCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FMCAD.2016.7886667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Formal Methods in Computer-Aided Design (FMCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMCAD.2016.7886667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们提出了Neo,一个用于设计预先验证的协议组件的框架,可以在任意大的层次结构(树)中实例化和连接,并保证整个系统满足给定的安全属性。我们采用网络不变量的思想来处理层次结构中任意深度的正确性。在正交方面,我们利用一个参数化的模型检查器(隔间)来允许树的每个内部节点上的子节点的参数数量。我们相信这是第一次在验证方法中一起处理这两个不同的配置维度,也是第一次在参数模型检查器中制定了观测预顺序的证明(如网络不变量所要求的)。除了子节点和父节点之间自然的上下通信之外,我们还允许点对点通信,因为许多真正的协议优化依赖于这种范式。本文详细介绍了建立在输入-输出自动机形式主义基础上的Neo理论,并在一个示例分层缓存一致性协议上演示了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verifiable hierarchical protocols with network invariants on parametric systems
We present Neo, a framework for designing pre-verified protocol components that can be instantiated and connected in an arbitrarily large hierarchy (tree), with a guarantee that the whole system satisfies a given safety property. We employ the idea of network invariants to handle correctness for arbitrary depths in the hierarchy. Orthogonally, we leverage a parameterized model checker (Cubicle) to allow for a parametric number of children at each internal node of the tree. We believe this is the first time these two distinct dimensions of configuration have been together tackled in a verification approach, and also the first time a proof of an observational preorder (as required by network invariants) has been formulated inside a parametric model checker. Aside from the natural up/down communication between a child and a parent, we allow for peer-to-peer communication, since many real protocol optimizations rely on this paradigm. The paper details the Neo theory, which is built upon the Input-Output Automata formalism, and demonstrates the approach on an example hierarchical cache coherence protocol.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信