基于边缘的LWM2M设备管理代理,高效支持qos感知物联网服务

Martina Pappalardo, A. Virdis, E. Mingozzi
{"title":"基于边缘的LWM2M设备管理代理,高效支持qos感知物联网服务","authors":"Martina Pappalardo, A. Virdis, E. Mingozzi","doi":"10.3390/iot3010011","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) brings Internet connectivity to devices and everyday objects. This huge volume of connected devices has to be managed taking into account the severe energy, memory, processing, and communication constraints of IoT devices and networks. In this context, the OMA LightweightM2M (LWM2M) protocol is designed for remote management of constrained devices, and related service enablement, through a management server usually deployed in a distant cloud data center. Following the Edge Computing paradigm, we propose in this work the introduction of a LWM2M Proxy that is deployed at the network edge, in between IoT devices and management servers. On one hand, the LWM2M Proxy improves various LWM2M management procedures whereas, on the other hand, it enables the support of QoS-aware services provided by IoT devices by allowing the implementation of advanced policies to efficiently use network, computing, and storage (i.e., cache) resources at the edge, thus providing benefits in terms of reduced and more predictable end-to-end latency. We evaluate the proposed solution both by simulation and experimentally, showing that it can strongly improve the LWM2M performance and the QoS of the system.","PeriodicalId":6745,"journal":{"name":"2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT)","volume":"193 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Edge-Based LWM2M Proxy for Device Management to Efficiently Support QoS-Aware IoT Services\",\"authors\":\"Martina Pappalardo, A. Virdis, E. Mingozzi\",\"doi\":\"10.3390/iot3010011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things (IoT) brings Internet connectivity to devices and everyday objects. This huge volume of connected devices has to be managed taking into account the severe energy, memory, processing, and communication constraints of IoT devices and networks. In this context, the OMA LightweightM2M (LWM2M) protocol is designed for remote management of constrained devices, and related service enablement, through a management server usually deployed in a distant cloud data center. Following the Edge Computing paradigm, we propose in this work the introduction of a LWM2M Proxy that is deployed at the network edge, in between IoT devices and management servers. On one hand, the LWM2M Proxy improves various LWM2M management procedures whereas, on the other hand, it enables the support of QoS-aware services provided by IoT devices by allowing the implementation of advanced policies to efficiently use network, computing, and storage (i.e., cache) resources at the edge, thus providing benefits in terms of reduced and more predictable end-to-end latency. We evaluate the proposed solution both by simulation and experimentally, showing that it can strongly improve the LWM2M performance and the QoS of the system.\",\"PeriodicalId\":6745,\"journal\":{\"name\":\"2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT)\",\"volume\":\"193 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/iot3010011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/iot3010011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

物联网(IoT)为设备和日常物品带来了互联网连接。必须考虑到物联网设备和网络的严重能量、内存、处理和通信限制来管理如此庞大的连接设备。在这种情况下,OMA轻量级m2m (LWM2M)协议设计用于通过通常部署在远程云数据中心的管理服务器远程管理受约束的设备和相关的服务启用。遵循边缘计算范式,我们在本工作中建议引入部署在网络边缘、物联网设备和管理服务器之间的LWM2M代理。一方面,LWM2M代理改进了各种LWM2M管理程序,而另一方面,它通过允许实施高级策略来有效地利用边缘的网络、计算和存储(即缓存)资源,从而支持物联网设备提供的qos感知服务,从而在减少和更可预测的端到端延迟方面提供好处。我们通过仿真和实验对该方案进行了评估,结果表明该方案能够显著提高LWM2M的性能和系统的QoS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Edge-Based LWM2M Proxy for Device Management to Efficiently Support QoS-Aware IoT Services
The Internet of Things (IoT) brings Internet connectivity to devices and everyday objects. This huge volume of connected devices has to be managed taking into account the severe energy, memory, processing, and communication constraints of IoT devices and networks. In this context, the OMA LightweightM2M (LWM2M) protocol is designed for remote management of constrained devices, and related service enablement, through a management server usually deployed in a distant cloud data center. Following the Edge Computing paradigm, we propose in this work the introduction of a LWM2M Proxy that is deployed at the network edge, in between IoT devices and management servers. On one hand, the LWM2M Proxy improves various LWM2M management procedures whereas, on the other hand, it enables the support of QoS-aware services provided by IoT devices by allowing the implementation of advanced policies to efficiently use network, computing, and storage (i.e., cache) resources at the edge, thus providing benefits in terms of reduced and more predictable end-to-end latency. We evaluate the proposed solution both by simulation and experimentally, showing that it can strongly improve the LWM2M performance and the QoS of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信