排除的Kac模型

IF 1.5 Q2 PHYSICS, MATHEMATICAL
E. Carlen, B. Wennberg
{"title":"排除的Kac模型","authors":"E. Carlen, B. Wennberg","doi":"10.1214/22-aihp1276","DOIUrl":null,"url":null,"abstract":"We consider a one dimension Kac model with conservation of energy and an exclusion rule: Fix a number of particles $n$, and an energy $E>0$. Let each of the particles have an energy $x_j \\geq 0$, with $\\sum_{j=1}^n x_j = E$. For some $\\epsilon$, the allowed configurations $(x_1,\\dots,x_n)$ are those that satisfy $|x_i - x_j| \\geq \\epsilon$ for all $i\\neq j$. At each step of the process, a pair $(i,j)$ of particles is selected uniformly at random, and then they \"collide\", and there is a repartition of their total energy $x_i + x_j$ between them producing new energies $x^*_i$ and $x^*_j$ with $x^*_i + x^*_j = x_i + x_j$, but with the restriction that exclusion rule is still observed for the new pair of energies. This process bears some resemblance to Kac models for Fermions in which the exclusion represents the effects of the Pauli exclusion principle. However, the \"non-quantized\" exclusion rule here, with only a lower bound on the gaps, introduces interesting novel features, and a strong notion of Kac's chaos is required to derive an evolution equation for the evolution of rescaled empirical measures for the process, as we show here.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Kac model with exclusion\",\"authors\":\"E. Carlen, B. Wennberg\",\"doi\":\"10.1214/22-aihp1276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a one dimension Kac model with conservation of energy and an exclusion rule: Fix a number of particles $n$, and an energy $E>0$. Let each of the particles have an energy $x_j \\\\geq 0$, with $\\\\sum_{j=1}^n x_j = E$. For some $\\\\epsilon$, the allowed configurations $(x_1,\\\\dots,x_n)$ are those that satisfy $|x_i - x_j| \\\\geq \\\\epsilon$ for all $i\\\\neq j$. At each step of the process, a pair $(i,j)$ of particles is selected uniformly at random, and then they \\\"collide\\\", and there is a repartition of their total energy $x_i + x_j$ between them producing new energies $x^*_i$ and $x^*_j$ with $x^*_i + x^*_j = x_i + x_j$, but with the restriction that exclusion rule is still observed for the new pair of energies. This process bears some resemblance to Kac models for Fermions in which the exclusion represents the effects of the Pauli exclusion principle. However, the \\\"non-quantized\\\" exclusion rule here, with only a lower bound on the gaps, introduces interesting novel features, and a strong notion of Kac's chaos is required to derive an evolution equation for the evolution of rescaled empirical measures for the process, as we show here.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aihp1276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aihp1276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑具有能量守恒和不相容规则的一维Kac模型:固定粒子数量$n$和能量$E>0$。让每个粒子都有一个能量$x_j \geq 0$和$\sum_{j=1}^n x_j = E$。对于某些$\epsilon$,允许的配置$(x_1,\dots,x_n)$是所有$i\neq j$满足$|x_i - x_j| \geq \epsilon$的配置。在每一步过程中,均匀随机地选择一对$(i,j)$粒子,然后它们“碰撞”,它们之间的总能量重新分配$x_i + x_j$,产生新的能量$x^*_i$和$x^*_j$与$x^*_i + x^*_j = x_i + x_j$,但有一个限制,即对新的能量对仍然观察到不相容规则。这个过程与卡茨费米子模型有些相似,在卡茨费米子模型中,不相容表示泡利不相容原理的影响。然而,这里的“非量子化”不排除规则,只有间隙的下界,引入了有趣的新特征,并且需要一个强大的Kac混沌概念来推导该过程的重标经验度量的演化方程,如我们在这里所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Kac model with exclusion
We consider a one dimension Kac model with conservation of energy and an exclusion rule: Fix a number of particles $n$, and an energy $E>0$. Let each of the particles have an energy $x_j \geq 0$, with $\sum_{j=1}^n x_j = E$. For some $\epsilon$, the allowed configurations $(x_1,\dots,x_n)$ are those that satisfy $|x_i - x_j| \geq \epsilon$ for all $i\neq j$. At each step of the process, a pair $(i,j)$ of particles is selected uniformly at random, and then they "collide", and there is a repartition of their total energy $x_i + x_j$ between them producing new energies $x^*_i$ and $x^*_j$ with $x^*_i + x^*_j = x_i + x_j$, but with the restriction that exclusion rule is still observed for the new pair of energies. This process bears some resemblance to Kac models for Fermions in which the exclusion represents the effects of the Pauli exclusion principle. However, the "non-quantized" exclusion rule here, with only a lower bound on the gaps, introduces interesting novel features, and a strong notion of Kac's chaos is required to derive an evolution equation for the evolution of rescaled empirical measures for the process, as we show here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信