{"title":"通过矩生成函数推导混合分布","authors":"S. Bagui, Jia Liu, S. Zhang","doi":"10.2991/jsta.d.200826.001","DOIUrl":null,"url":null,"abstract":"This article aims to make use of moment-generating functions (mgfs) to derive the density of mixture distributions from hierarchical models. When the mgf of a mixture distribution doesn’t exist, one can extend the approach to characteristic functions to derive the mixture density. This article uses a result given by E.R. Villa, L.A. Escobar, Am. Stat. 60 (2006), 75–80. The present work complements E.R. Villa, L.A. Escobar, Am. Stat. 60 (2006), 75–80 article with many new examples.","PeriodicalId":45080,"journal":{"name":"Journal of Statistical Theory and Applications","volume":"25 1","pages":"383-390"},"PeriodicalIF":1.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deriving Mixture Distributions Through Moment-Generating Functions\",\"authors\":\"S. Bagui, Jia Liu, S. Zhang\",\"doi\":\"10.2991/jsta.d.200826.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article aims to make use of moment-generating functions (mgfs) to derive the density of mixture distributions from hierarchical models. When the mgf of a mixture distribution doesn’t exist, one can extend the approach to characteristic functions to derive the mixture density. This article uses a result given by E.R. Villa, L.A. Escobar, Am. Stat. 60 (2006), 75–80. The present work complements E.R. Villa, L.A. Escobar, Am. Stat. 60 (2006), 75–80 article with many new examples.\",\"PeriodicalId\":45080,\"journal\":{\"name\":\"Journal of Statistical Theory and Applications\",\"volume\":\"25 1\",\"pages\":\"383-390\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/jsta.d.200826.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/jsta.d.200826.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Deriving Mixture Distributions Through Moment-Generating Functions
This article aims to make use of moment-generating functions (mgfs) to derive the density of mixture distributions from hierarchical models. When the mgf of a mixture distribution doesn’t exist, one can extend the approach to characteristic functions to derive the mixture density. This article uses a result given by E.R. Villa, L.A. Escobar, Am. Stat. 60 (2006), 75–80. The present work complements E.R. Villa, L.A. Escobar, Am. Stat. 60 (2006), 75–80 article with many new examples.