广义加权$B$-Morrey空间上$B$-奇异积分算子及其对易子的刻画

IF 1 Q1 MATHEMATICS
J. Hasanov, I. Ekincioğlu, C. Keskin
{"title":"广义加权$B$-Morrey空间上$B$-奇异积分算子及其对易子的刻画","authors":"J. Hasanov, I. Ekincioğlu, C. Keskin","doi":"10.15330/cmp.15.1.196-211","DOIUrl":null,"url":null,"abstract":"We study the maximal operator $M_{\\gamma}$ and the singular integral operator $A_{\\gamma}$, associated with the generalized shift operator. The generalized shift operators are associated with the Laplace-Bessel differential operator. Our analysis is based on two weighted inequalities for the maximal operator, singular integral operators, and their commutators, related to the Laplace-Bessel differential operator in generalized weighted $B$-Morrey spaces.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A characterization for $B$-singular integral operator and its commutators on generalized weighted $B$-Morrey spaces\",\"authors\":\"J. Hasanov, I. Ekincioğlu, C. Keskin\",\"doi\":\"10.15330/cmp.15.1.196-211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the maximal operator $M_{\\\\gamma}$ and the singular integral operator $A_{\\\\gamma}$, associated with the generalized shift operator. The generalized shift operators are associated with the Laplace-Bessel differential operator. Our analysis is based on two weighted inequalities for the maximal operator, singular integral operators, and their commutators, related to the Laplace-Bessel differential operator in generalized weighted $B$-Morrey spaces.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.15.1.196-211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.1.196-211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

研究了与广义移位算子相关的极大算子$M_{\gamma}$和奇异积分算子$A_{\gamma}$。广义移位算子与拉普拉斯-贝塞尔微分算子相关联。我们的分析是基于广义加权$B$-Morrey空间中与拉普拉斯-贝塞尔微分算子相关的极大算子、奇异积分算子及其对易子的两个加权不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A characterization for $B$-singular integral operator and its commutators on generalized weighted $B$-Morrey spaces
We study the maximal operator $M_{\gamma}$ and the singular integral operator $A_{\gamma}$, associated with the generalized shift operator. The generalized shift operators are associated with the Laplace-Bessel differential operator. Our analysis is based on two weighted inequalities for the maximal operator, singular integral operators, and their commutators, related to the Laplace-Bessel differential operator in generalized weighted $B$-Morrey spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信