强大群体中的Agemos欧米茄。

James Williams
{"title":"强大群体中的Agemos欧米茄。","authors":"James Williams","doi":"10.22108/IJGT.2019.113217.1507","DOIUrl":null,"url":null,"abstract":"In this note we show that for any powerful $p$-group $G$, the subgroup $\\Omega_{i}(G^{p^{j}})$ is powerfully nilpotent for all $i,j\\geq1$ when $p$ is an odd prime, and $i\\geq1$, $j\\geq2$ when $p=2$. We provide an example to show why this modification is needed in the case $p=2$. Furthermore we obtain a bound on the powerful nilpotency class of $\\Omega_{i}(G^{p^{j}})$. We give an example to show that powerfully nilpotent characteristic subgroups of powerful $p$-groups need not be strongly powerful.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Omegas of Agemos in Powerful Groups.\",\"authors\":\"James Williams\",\"doi\":\"10.22108/IJGT.2019.113217.1507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we show that for any powerful $p$-group $G$, the subgroup $\\\\Omega_{i}(G^{p^{j}})$ is powerfully nilpotent for all $i,j\\\\geq1$ when $p$ is an odd prime, and $i\\\\geq1$, $j\\\\geq2$ when $p=2$. We provide an example to show why this modification is needed in the case $p=2$. Furthermore we obtain a bound on the powerful nilpotency class of $\\\\Omega_{i}(G^{p^{j}})$. We give an example to show that powerfully nilpotent characteristic subgroups of powerful $p$-groups need not be strongly powerful.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/IJGT.2019.113217.1507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2019.113217.1507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们证明了对于任何强大的$p$ -群$G$,当$p$是奇数素数时,子群$\Omega_{i}(G^{p^{j}})$对所有$i,j\geq1$都是强大的幂零,当$p=2$是奇数素数时,$i\geq1$, $j\geq2$。我们提供一个示例来说明为什么需要在$p=2$中进行此修改。进一步得到了$\Omega_{i}(G^{p^{j}})$的一个强幂零类的界。我们给出了一个例子来证明强大$p$ -群的强大幂零特征子群不一定是强大的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Omegas of Agemos in Powerful Groups.
In this note we show that for any powerful $p$-group $G$, the subgroup $\Omega_{i}(G^{p^{j}})$ is powerfully nilpotent for all $i,j\geq1$ when $p$ is an odd prime, and $i\geq1$, $j\geq2$ when $p=2$. We provide an example to show why this modification is needed in the case $p=2$. Furthermore we obtain a bound on the powerful nilpotency class of $\Omega_{i}(G^{p^{j}})$. We give an example to show that powerfully nilpotent characteristic subgroups of powerful $p$-groups need not be strongly powerful.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信