{"title":"用管样评价690合金蒸汽发生器管的高温蠕变性能","authors":"Jongmin Kim, W. Kim, Min-Chul Kim","doi":"10.1115/pvp2019-93498","DOIUrl":null,"url":null,"abstract":"\n Thermally induced steam generator (SG) tube failures caused by hot gases from a damaged reactor core can result in a containment bypass event and may lead to release of fission products to the environment. A typical severe accident scenario is a station blackout (SBO) with loss of auxiliary feedwater. Alloy 690 which has increased the Cr content has been replaced for the SG tube due to its high corrosion resistance against stress corrosion cracking (SCC). However, there is lack of research on the high temperature creep rupture and life prediction model of Alloy 690. In this study, creep test was performed to estimate the high temperature creep rupture life of Alloy 690. Based on reported creep data and creep test results of Alloy 690 in this study, creep life extrapolation was carried out using Larson-Miller Parameter (LMP), Orr-Sherby-Dorn (OSD), Manson-Haferd Parameter (MHP), and Wilshire’s approach. And a hyperbolic sine (sinh) function to determine master curves in LMP, OSD and MHP methods was used for improving the creep life estimation of Alloy 690 material.","PeriodicalId":23651,"journal":{"name":"Volume 6B: Materials and Fabrication","volume":"22 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Evaluation of Creep Properties of Alloy 690 Steam Generator Tubes at High Temperature Using Tube Specimen\",\"authors\":\"Jongmin Kim, W. Kim, Min-Chul Kim\",\"doi\":\"10.1115/pvp2019-93498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Thermally induced steam generator (SG) tube failures caused by hot gases from a damaged reactor core can result in a containment bypass event and may lead to release of fission products to the environment. A typical severe accident scenario is a station blackout (SBO) with loss of auxiliary feedwater. Alloy 690 which has increased the Cr content has been replaced for the SG tube due to its high corrosion resistance against stress corrosion cracking (SCC). However, there is lack of research on the high temperature creep rupture and life prediction model of Alloy 690. In this study, creep test was performed to estimate the high temperature creep rupture life of Alloy 690. Based on reported creep data and creep test results of Alloy 690 in this study, creep life extrapolation was carried out using Larson-Miller Parameter (LMP), Orr-Sherby-Dorn (OSD), Manson-Haferd Parameter (MHP), and Wilshire’s approach. And a hyperbolic sine (sinh) function to determine master curves in LMP, OSD and MHP methods was used for improving the creep life estimation of Alloy 690 material.\",\"PeriodicalId\":23651,\"journal\":{\"name\":\"Volume 6B: Materials and Fabrication\",\"volume\":\"22 4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6B: Materials and Fabrication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/pvp2019-93498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6B: Materials and Fabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of Creep Properties of Alloy 690 Steam Generator Tubes at High Temperature Using Tube Specimen
Thermally induced steam generator (SG) tube failures caused by hot gases from a damaged reactor core can result in a containment bypass event and may lead to release of fission products to the environment. A typical severe accident scenario is a station blackout (SBO) with loss of auxiliary feedwater. Alloy 690 which has increased the Cr content has been replaced for the SG tube due to its high corrosion resistance against stress corrosion cracking (SCC). However, there is lack of research on the high temperature creep rupture and life prediction model of Alloy 690. In this study, creep test was performed to estimate the high temperature creep rupture life of Alloy 690. Based on reported creep data and creep test results of Alloy 690 in this study, creep life extrapolation was carried out using Larson-Miller Parameter (LMP), Orr-Sherby-Dorn (OSD), Manson-Haferd Parameter (MHP), and Wilshire’s approach. And a hyperbolic sine (sinh) function to determine master curves in LMP, OSD and MHP methods was used for improving the creep life estimation of Alloy 690 material.