Feng Li, Zhenrui Chen, Pengjie Wang, Yi Ren, Di Zhang, Xiaoyu Zhu
{"title":"赞助搜索中点击率预测的图形意图网络","authors":"Feng Li, Zhenrui Chen, Pengjie Wang, Yi Ren, Di Zhang, Xiaoyu Zhu","doi":"10.1145/3331184.3331283","DOIUrl":null,"url":null,"abstract":"Estimating click-through rate (CTR) accurately has an essential impact on improving user experience and revenue in sponsored search. For CTR prediction model, it is necessary to make out user's real-time search intention. Most of the current work is to mine their intentions based on users' real-time behaviors. However, it is difficult to capture the intention when user behaviors are sparse, causing thebehavior sparsity problem. Moreover, it is difficult for user to jump out of their specific historical behaviors for possible interest exploration, namelyweak generalization problem. We propose a new approach Graph Intention Network (GIN) based on co-occurrence commodity graph to mine user intention. By adopting multi-layered graph diffusion, GIN enriches user behaviors to solve the behavior sparsity problem. By introducing co-occurrence relationship of commodities to explore the potential preferences, the weak generalization problem is also alleviated. To the best of our knowledge, the GIN method is the first to introduce graph learning for user intention mining in CTR prediction and propose end-to-end joint training of graph learning and CTR prediction tasks in sponsored search. At present, GIN has achieved excellent offline results on the real-world data of the e-commerce platform outperforming existing deep learning models, and has been running stable tests online and achieved significant CTR improvements.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Graph Intention Network for Click-through Rate Prediction in Sponsored Search\",\"authors\":\"Feng Li, Zhenrui Chen, Pengjie Wang, Yi Ren, Di Zhang, Xiaoyu Zhu\",\"doi\":\"10.1145/3331184.3331283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating click-through rate (CTR) accurately has an essential impact on improving user experience and revenue in sponsored search. For CTR prediction model, it is necessary to make out user's real-time search intention. Most of the current work is to mine their intentions based on users' real-time behaviors. However, it is difficult to capture the intention when user behaviors are sparse, causing thebehavior sparsity problem. Moreover, it is difficult for user to jump out of their specific historical behaviors for possible interest exploration, namelyweak generalization problem. We propose a new approach Graph Intention Network (GIN) based on co-occurrence commodity graph to mine user intention. By adopting multi-layered graph diffusion, GIN enriches user behaviors to solve the behavior sparsity problem. By introducing co-occurrence relationship of commodities to explore the potential preferences, the weak generalization problem is also alleviated. To the best of our knowledge, the GIN method is the first to introduce graph learning for user intention mining in CTR prediction and propose end-to-end joint training of graph learning and CTR prediction tasks in sponsored search. At present, GIN has achieved excellent offline results on the real-world data of the e-commerce platform outperforming existing deep learning models, and has been running stable tests online and achieved significant CTR improvements.\",\"PeriodicalId\":20700,\"journal\":{\"name\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3331184.3331283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graph Intention Network for Click-through Rate Prediction in Sponsored Search
Estimating click-through rate (CTR) accurately has an essential impact on improving user experience and revenue in sponsored search. For CTR prediction model, it is necessary to make out user's real-time search intention. Most of the current work is to mine their intentions based on users' real-time behaviors. However, it is difficult to capture the intention when user behaviors are sparse, causing thebehavior sparsity problem. Moreover, it is difficult for user to jump out of their specific historical behaviors for possible interest exploration, namelyweak generalization problem. We propose a new approach Graph Intention Network (GIN) based on co-occurrence commodity graph to mine user intention. By adopting multi-layered graph diffusion, GIN enriches user behaviors to solve the behavior sparsity problem. By introducing co-occurrence relationship of commodities to explore the potential preferences, the weak generalization problem is also alleviated. To the best of our knowledge, the GIN method is the first to introduce graph learning for user intention mining in CTR prediction and propose end-to-end joint training of graph learning and CTR prediction tasks in sponsored search. At present, GIN has achieved excellent offline results on the real-world data of the e-commerce platform outperforming existing deep learning models, and has been running stable tests online and achieved significant CTR improvements.