A. F. Solarte, N. Pellegri, O. Sanctis, M. Stachiotti
{"title":"螯合法制备Na0.5K0.5NbO3薄膜","authors":"A. F. Solarte, N. Pellegri, O. Sanctis, M. Stachiotti","doi":"10.1155/2013/850751","DOIUrl":null,"url":null,"abstract":"Na0.5K0.5NbO3 (NKN) thin films were prepared by a chelate route which offers the advantage of a simple and rapid solution synthesis. The route is based on the use of acetoin as a chelating agent. The process was optimized by investigating the effects of alkaline volatilization on film properties. While we observed no evidence of stoichiometry problems due to potassium volatilization loss during the heat treatments, thin films synthesized with insufficient sodium excess presented a potassium-rich secondary phase, which has a significant influence on the ferroelectric properties. We show that the amount of spurious phase decreases with increasing Na","PeriodicalId":14862,"journal":{"name":"Journal of Advanced Ceramics","volume":"1 1","pages":"1-7"},"PeriodicalIF":18.6000,"publicationDate":"2013-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Simple and rapid fabrication of Na0.5K0.5NbO3 thin films by a chelate route\",\"authors\":\"A. F. Solarte, N. Pellegri, O. Sanctis, M. Stachiotti\",\"doi\":\"10.1155/2013/850751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Na0.5K0.5NbO3 (NKN) thin films were prepared by a chelate route which offers the advantage of a simple and rapid solution synthesis. The route is based on the use of acetoin as a chelating agent. The process was optimized by investigating the effects of alkaline volatilization on film properties. While we observed no evidence of stoichiometry problems due to potassium volatilization loss during the heat treatments, thin films synthesized with insufficient sodium excess presented a potassium-rich secondary phase, which has a significant influence on the ferroelectric properties. We show that the amount of spurious phase decreases with increasing Na\",\"PeriodicalId\":14862,\"journal\":{\"name\":\"Journal of Advanced Ceramics\",\"volume\":\"1 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2013-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/850751\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2013/850751","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Simple and rapid fabrication of Na0.5K0.5NbO3 thin films by a chelate route
Na0.5K0.5NbO3 (NKN) thin films were prepared by a chelate route which offers the advantage of a simple and rapid solution synthesis. The route is based on the use of acetoin as a chelating agent. The process was optimized by investigating the effects of alkaline volatilization on film properties. While we observed no evidence of stoichiometry problems due to potassium volatilization loss during the heat treatments, thin films synthesized with insufficient sodium excess presented a potassium-rich secondary phase, which has a significant influence on the ferroelectric properties. We show that the amount of spurious phase decreases with increasing Na
期刊介绍:
Journal of Advanced Ceramics is a single-blind peer-reviewed, open access international journal published on behalf of the State Key Laboratory of New Ceramics and Fine Processing (Tsinghua University, China) and the Advanced Ceramics Division of the Chinese Ceramic Society.
Journal of Advanced Ceramics provides a forum for publishing original research papers, rapid communications, and commissioned reviews relating to advanced ceramic materials in the forms of particulates, dense or porous bodies, thin/thick films or coatings and laminated, graded and composite structures.