{"title":"从可执行指令集模型中提取行为","authors":"B. Campbell, I. Stark","doi":"10.1109/FMCAD.2016.7886658","DOIUrl":null,"url":null,"abstract":"Presenting large formal instruction set models as executable functions makes them accessible to engineers and useful for less formal purposes such as simulation. However, it is more difficult to extract information about the behaviour of individual instructions for reasoning. We present a method which combines symbolic evaluation and symbolic execution techniques to provide a rule-based view of instruction behaviour, with particular application to automatic test generation for large MIPS-like models.","PeriodicalId":6479,"journal":{"name":"2016 Formal Methods in Computer-Aided Design (FMCAD)","volume":"38 1","pages":"33-40"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Extracting behaviour from an executable instruction set model\",\"authors\":\"B. Campbell, I. Stark\",\"doi\":\"10.1109/FMCAD.2016.7886658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presenting large formal instruction set models as executable functions makes them accessible to engineers and useful for less formal purposes such as simulation. However, it is more difficult to extract information about the behaviour of individual instructions for reasoning. We present a method which combines symbolic evaluation and symbolic execution techniques to provide a rule-based view of instruction behaviour, with particular application to automatic test generation for large MIPS-like models.\",\"PeriodicalId\":6479,\"journal\":{\"name\":\"2016 Formal Methods in Computer-Aided Design (FMCAD)\",\"volume\":\"38 1\",\"pages\":\"33-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Formal Methods in Computer-Aided Design (FMCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FMCAD.2016.7886658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Formal Methods in Computer-Aided Design (FMCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMCAD.2016.7886658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extracting behaviour from an executable instruction set model
Presenting large formal instruction set models as executable functions makes them accessible to engineers and useful for less formal purposes such as simulation. However, it is more difficult to extract information about the behaviour of individual instructions for reasoning. We present a method which combines symbolic evaluation and symbolic execution techniques to provide a rule-based view of instruction behaviour, with particular application to automatic test generation for large MIPS-like models.