{"title":"单克隆抗体和免疫pet成像:综述","authors":"E. T. Sarcan, Yekta A. Özer","doi":"10.55262/fabadeczacilik.1172020","DOIUrl":null,"url":null,"abstract":"Radiopharmaceuticals are radioactive medicines used for imaging and/or therapeutic purposes, consisting of radionuclidic and pharmaceutical parts. While PET and SPECT methods are used for imaging purposes, immuno-PET imaging method has gained popularity, recently. Immuno-PET imaging method, is a combination of PET radionuclides and biomolecules, especially monoclonal antibodies (mAb), proteins, peptides, are frequently used for the imaging of different types of cancer. Radionuclides with long half-lives are generally used in immuno-PET imaging. Long biological half-lives of mAbs is the most important reason to be preferred for immuno-PET imaging. Today, Zirconium-89 (Zr-89), Iodine-124 (I-124) with long half-lives and Copper-64 (Cu-64) and Yttrium-86 (Y-86) radionuclides with relatively long half-lives are preferred in immuno-PET imaging. In this article, studies on Zr-89, Cu-64, I-124 and Y-86-labeled mAbs with long half-life and clinical and preclinical studies were reviewed. Also, comparison of these 4 radionuclides, which are frequently used in the labelling of biomolecules (particularly mAbs) with is included.","PeriodicalId":36004,"journal":{"name":"Fabad Journal of Pharmaceutical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monoclonal Antibodies and Immuno-PET Imaging: An Overview\",\"authors\":\"E. T. Sarcan, Yekta A. Özer\",\"doi\":\"10.55262/fabadeczacilik.1172020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radiopharmaceuticals are radioactive medicines used for imaging and/or therapeutic purposes, consisting of radionuclidic and pharmaceutical parts. While PET and SPECT methods are used for imaging purposes, immuno-PET imaging method has gained popularity, recently. Immuno-PET imaging method, is a combination of PET radionuclides and biomolecules, especially monoclonal antibodies (mAb), proteins, peptides, are frequently used for the imaging of different types of cancer. Radionuclides with long half-lives are generally used in immuno-PET imaging. Long biological half-lives of mAbs is the most important reason to be preferred for immuno-PET imaging. Today, Zirconium-89 (Zr-89), Iodine-124 (I-124) with long half-lives and Copper-64 (Cu-64) and Yttrium-86 (Y-86) radionuclides with relatively long half-lives are preferred in immuno-PET imaging. In this article, studies on Zr-89, Cu-64, I-124 and Y-86-labeled mAbs with long half-life and clinical and preclinical studies were reviewed. Also, comparison of these 4 radionuclides, which are frequently used in the labelling of biomolecules (particularly mAbs) with is included.\",\"PeriodicalId\":36004,\"journal\":{\"name\":\"Fabad Journal of Pharmaceutical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fabad Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55262/fabadeczacilik.1172020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fabad Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55262/fabadeczacilik.1172020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Monoclonal Antibodies and Immuno-PET Imaging: An Overview
Radiopharmaceuticals are radioactive medicines used for imaging and/or therapeutic purposes, consisting of radionuclidic and pharmaceutical parts. While PET and SPECT methods are used for imaging purposes, immuno-PET imaging method has gained popularity, recently. Immuno-PET imaging method, is a combination of PET radionuclides and biomolecules, especially monoclonal antibodies (mAb), proteins, peptides, are frequently used for the imaging of different types of cancer. Radionuclides with long half-lives are generally used in immuno-PET imaging. Long biological half-lives of mAbs is the most important reason to be preferred for immuno-PET imaging. Today, Zirconium-89 (Zr-89), Iodine-124 (I-124) with long half-lives and Copper-64 (Cu-64) and Yttrium-86 (Y-86) radionuclides with relatively long half-lives are preferred in immuno-PET imaging. In this article, studies on Zr-89, Cu-64, I-124 and Y-86-labeled mAbs with long half-life and clinical and preclinical studies were reviewed. Also, comparison of these 4 radionuclides, which are frequently used in the labelling of biomolecules (particularly mAbs) with is included.
期刊介绍:
The FABAD Journal of Pharmaceutical Sciences is published triannually by the Society of Pharmaceutical Sciences of Ankara (FABAD). All expressions of opinion and statements of supposed facts appearing in articles and/or advertisiments carried in this journal are published on the responsibility of the author and/or advertiser, anda re not to be regarded those of the Society of Pharmaceutical Sciences of Ankara. The manuscript submitted to the Journal has the requirement of not being published previously and has not been submitted elsewhere. Manuscripts should be prepared in accordance with the requirements specified as given in detail in the section of “Information for Authors”. The submission of the manuscript to the Journal is not a condition for acceptance; articles are accepted or rejected on merit alone. All rights reserved.