{"title":"多壁碳纳米管与炭黑填充交联聚乙烯的电老化比较研究","authors":"Pei Yang, Ke Tian, Xiancheng Ren, Kai Zhou","doi":"10.1080/20550324.2019.1669897","DOIUrl":null,"url":null,"abstract":"Abstract In this work, XLPE/MWCNT and XLPE/CB nanocomposites have been prepared in order to investigate AC electric field and water effects on electrical aging of XLPE. The mechanical, AC breakdown strength and AC conductivity were tested and the morphologies after 30 days electrical aging were observed using an optical microscope. The results showed that all samples exhibit excellent insulation properties and mechanical properties. Compared with CB addition, the MWCNT composites exhibit better resistance to electrical aging, with the length of electrical aging-induced microcracks in the MWCNT blends decreasing from 104 to 22 µm, and the width decreasing from 87 to 17 µm, which means a reduction of ∼80% compared of values for neat XLPE in both length and width. However, the XLPE/CB composites have a tendency to promote electrical aging. The mechanism is revealed by comparing the results of the fibrous MWCNTs with the spherical CBs. Graphical Abstract","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"42 1","pages":"103 - 95"},"PeriodicalIF":4.2000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A comparative study of electrical aging of multiwalled carbon nanotubes and carbon black filled cross-linked polyethylene\",\"authors\":\"Pei Yang, Ke Tian, Xiancheng Ren, Kai Zhou\",\"doi\":\"10.1080/20550324.2019.1669897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, XLPE/MWCNT and XLPE/CB nanocomposites have been prepared in order to investigate AC electric field and water effects on electrical aging of XLPE. The mechanical, AC breakdown strength and AC conductivity were tested and the morphologies after 30 days electrical aging were observed using an optical microscope. The results showed that all samples exhibit excellent insulation properties and mechanical properties. Compared with CB addition, the MWCNT composites exhibit better resistance to electrical aging, with the length of electrical aging-induced microcracks in the MWCNT blends decreasing from 104 to 22 µm, and the width decreasing from 87 to 17 µm, which means a reduction of ∼80% compared of values for neat XLPE in both length and width. However, the XLPE/CB composites have a tendency to promote electrical aging. The mechanism is revealed by comparing the results of the fibrous MWCNTs with the spherical CBs. Graphical Abstract\",\"PeriodicalId\":18872,\"journal\":{\"name\":\"Nanocomposites\",\"volume\":\"42 1\",\"pages\":\"103 - 95\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2019-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanocomposites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/20550324.2019.1669897\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanocomposites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/20550324.2019.1669897","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
A comparative study of electrical aging of multiwalled carbon nanotubes and carbon black filled cross-linked polyethylene
Abstract In this work, XLPE/MWCNT and XLPE/CB nanocomposites have been prepared in order to investigate AC electric field and water effects on electrical aging of XLPE. The mechanical, AC breakdown strength and AC conductivity were tested and the morphologies after 30 days electrical aging were observed using an optical microscope. The results showed that all samples exhibit excellent insulation properties and mechanical properties. Compared with CB addition, the MWCNT composites exhibit better resistance to electrical aging, with the length of electrical aging-induced microcracks in the MWCNT blends decreasing from 104 to 22 µm, and the width decreasing from 87 to 17 µm, which means a reduction of ∼80% compared of values for neat XLPE in both length and width. However, the XLPE/CB composites have a tendency to promote electrical aging. The mechanism is revealed by comparing the results of the fibrous MWCNTs with the spherical CBs. Graphical Abstract