多孔介质中非等温非混溶可压缩热一致两相流

IF 1 4区 工程技术 Q4 MECHANICS
Mladen Jurak , Alexandre Koldoba , Andrey Konyukhov , Leonid Pankratov
{"title":"多孔介质中非等温非混溶可压缩热一致两相流","authors":"Mladen Jurak ,&nbsp;Alexandre Koldoba ,&nbsp;Andrey Konyukhov ,&nbsp;Leonid Pankratov","doi":"10.1016/j.crme.2019.11.015","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce a new model of the nonisothermal immiscible compressible thermodynamically consistent two-phase flow in a porous domain Ω. This model includes the term describing the skeleton and interphase boundary energies. In the framework of the model, we derive the equation for the entropy function in the whole Ω and then obtain the estimate of the maximal entropy of the system.</p></div>","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":"347 12","pages":"Pages 920-929"},"PeriodicalIF":1.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crme.2019.11.015","citationCount":"2","resultStr":"{\"title\":\"Nonisothermal immiscible compressible thermodynamically consistent two-phase flow in porous media\",\"authors\":\"Mladen Jurak ,&nbsp;Alexandre Koldoba ,&nbsp;Andrey Konyukhov ,&nbsp;Leonid Pankratov\",\"doi\":\"10.1016/j.crme.2019.11.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce a new model of the nonisothermal immiscible compressible thermodynamically consistent two-phase flow in a porous domain Ω. This model includes the term describing the skeleton and interphase boundary energies. In the framework of the model, we derive the equation for the entropy function in the whole Ω and then obtain the estimate of the maximal entropy of the system.</p></div>\",\"PeriodicalId\":50997,\"journal\":{\"name\":\"Comptes Rendus Mecanique\",\"volume\":\"347 12\",\"pages\":\"Pages 920-929\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.crme.2019.11.015\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mecanique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1631072119301871\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1631072119301871","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的多孔域非等温非混相可压缩热一致两相流模型Ω。该模型包括描述骨架和相间边界能的术语。在模型的框架下,推导出整个系统的熵函数方程Ω,进而得到系统最大熵的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonisothermal immiscible compressible thermodynamically consistent two-phase flow in porous media

In this paper, we introduce a new model of the nonisothermal immiscible compressible thermodynamically consistent two-phase flow in a porous domain Ω. This model includes the term describing the skeleton and interphase boundary energies. In the framework of the model, we derive the equation for the entropy function in the whole Ω and then obtain the estimate of the maximal entropy of the system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Comptes Rendus Mecanique
Comptes Rendus Mecanique 物理-力学
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信