迈向快速、准确的分割

C. J. Taylor
{"title":"迈向快速、准确的分割","authors":"C. J. Taylor","doi":"10.1109/CVPR.2013.250","DOIUrl":null,"url":null,"abstract":"In this paper we explore approaches to accelerating segmentation and edge detection algorithms based on the \\emph{gPb} framework. The paper characterizes the performance of a simple but effective edge detection scheme which can be computed rapidly and offers performance that is competitive with the pB detector. The paper also describes an approach for computing a reduced order normalized cut that captures the essential features of the original problem but can be computed in less than half a second on a standard computing platform.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"4 1","pages":"1916-1922"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Towards Fast and Accurate Segmentation\",\"authors\":\"C. J. Taylor\",\"doi\":\"10.1109/CVPR.2013.250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we explore approaches to accelerating segmentation and edge detection algorithms based on the \\\\emph{gPb} framework. The paper characterizes the performance of a simple but effective edge detection scheme which can be computed rapidly and offers performance that is competitive with the pB detector. The paper also describes an approach for computing a reduced order normalized cut that captures the essential features of the original problem but can be computed in less than half a second on a standard computing platform.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"4 1\",\"pages\":\"1916-1922\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

在本文中,我们探索了基于\emph{gPb}框架的加速分割和边缘检测算法。本文描述了一种简单而有效的边缘检测方案的性能,该方案可以快速计算,并提供与pB检测器竞争的性能。本文还描述了一种计算降阶归一化切的方法,该方法捕获了原始问题的基本特征,但可以在不到半秒的时间内在标准计算平台上计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Fast and Accurate Segmentation
In this paper we explore approaches to accelerating segmentation and edge detection algorithms based on the \emph{gPb} framework. The paper characterizes the performance of a simple but effective edge detection scheme which can be computed rapidly and offers performance that is competitive with the pB detector. The paper also describes an approach for computing a reduced order normalized cut that captures the essential features of the original problem but can be computed in less than half a second on a standard computing platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信