Sunasheer Bhattacharjee, Martin Damrath, Fabian Bronner, Lukas Stratmann, J. P. Drees, F. Dressler, P. Hoeher
{"title":"基于荧光素的空气分子通信测试平台和仿真框架","authors":"Sunasheer Bhattacharjee, Martin Damrath, Fabian Bronner, Lukas Stratmann, J. P. Drees, F. Dressler, P. Hoeher","doi":"10.1145/3411295.3411298","DOIUrl":null,"url":null,"abstract":"Molecular communication can enable transmission of information within industrial networks comprising of pipes, ducts, etc. This work emulates the system by introducing an air-based macroscopic molecular communication testbed, exploiting the fluorescence property of a water-based solution of an organic compound called fluorescein. An efficient transmitter in the form of an industrial sprayer, coupled with a high-speed camera-based detection, eventually paves way to achieve higher data transmission rates. The transmission distances considered are in the range of several centimeters to meters. Additionally, models for spray nozzle injector and camera receiver are described to simulate the testbed in a particle-based simulator. These simulated models are calibrated to the used transmitter and receiver and are compared with the analytical models obtained from the testbed measurements.","PeriodicalId":93611,"journal":{"name":"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A testbed and simulation framework for air-based molecular communication using fluorescein\",\"authors\":\"Sunasheer Bhattacharjee, Martin Damrath, Fabian Bronner, Lukas Stratmann, J. P. Drees, F. Dressler, P. Hoeher\",\"doi\":\"10.1145/3411295.3411298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular communication can enable transmission of information within industrial networks comprising of pipes, ducts, etc. This work emulates the system by introducing an air-based macroscopic molecular communication testbed, exploiting the fluorescence property of a water-based solution of an organic compound called fluorescein. An efficient transmitter in the form of an industrial sprayer, coupled with a high-speed camera-based detection, eventually paves way to achieve higher data transmission rates. The transmission distances considered are in the range of several centimeters to meters. Additionally, models for spray nozzle injector and camera receiver are described to simulate the testbed in a particle-based simulator. These simulated models are calibrated to the used transmitter and receiver and are compared with the analytical models obtained from the testbed measurements.\",\"PeriodicalId\":93611,\"journal\":{\"name\":\"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3411295.3411298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411295.3411298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A testbed and simulation framework for air-based molecular communication using fluorescein
Molecular communication can enable transmission of information within industrial networks comprising of pipes, ducts, etc. This work emulates the system by introducing an air-based macroscopic molecular communication testbed, exploiting the fluorescence property of a water-based solution of an organic compound called fluorescein. An efficient transmitter in the form of an industrial sprayer, coupled with a high-speed camera-based detection, eventually paves way to achieve higher data transmission rates. The transmission distances considered are in the range of several centimeters to meters. Additionally, models for spray nozzle injector and camera receiver are described to simulate the testbed in a particle-based simulator. These simulated models are calibrated to the used transmitter and receiver and are compared with the analytical models obtained from the testbed measurements.