正线性算子的广义Kantorovich修正

IF 1.3 Q3 COMPUTER SCIENCE, THEORY & METHODS
A. Acu, Ioan Cristian Buşcu, I. Raşa
{"title":"正线性算子的广义Kantorovich修正","authors":"A. Acu, Ioan Cristian Buşcu, I. Raşa","doi":"10.3934/mfc.2021042","DOIUrl":null,"url":null,"abstract":"Starting with a positive linear operator we apply the Kantorovich modification and a related modification. The resulting operators are investigated. We are interested in the eigenstructure, Voronovskaya formula, the induced generalized convexity, invariant measures and iterates. Some known results from the literature are extended.","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Generalized Kantorovich modifications of positive linear operators\",\"authors\":\"A. Acu, Ioan Cristian Buşcu, I. Raşa\",\"doi\":\"10.3934/mfc.2021042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Starting with a positive linear operator we apply the Kantorovich modification and a related modification. The resulting operators are investigated. We are interested in the eigenstructure, Voronovskaya formula, the induced generalized convexity, invariant measures and iterates. Some known results from the literature are extended.\",\"PeriodicalId\":93334,\"journal\":{\"name\":\"Mathematical foundations of computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical foundations of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/mfc.2021042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2021042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 7

摘要

从一个正线性算子开始,我们应用了Kantorovich修正和一个相关的修正。对得到的算子进行了研究。我们对特征结构、Voronovskaya公式、归纳广义凸性、不变测度和迭代感兴趣。推广了文献中一些已知的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Kantorovich modifications of positive linear operators
Starting with a positive linear operator we apply the Kantorovich modification and a related modification. The resulting operators are investigated. We are interested in the eigenstructure, Voronovskaya formula, the induced generalized convexity, invariant measures and iterates. Some known results from the literature are extended.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信