绝望:基于智能手机的公民科学和城市调查目标检测

Q1 Social Sciences
i-com Pub Date : 2021-08-01 DOI:10.31219/osf.io/drs6u
Christopher Getschmann, Florian Echtler
{"title":"绝望:基于智能手机的公民科学和城市调查目标检测","authors":"Christopher Getschmann, Florian Echtler","doi":"10.31219/osf.io/drs6u","DOIUrl":null,"url":null,"abstract":"Abstract Data acquisition is a central task in research and one of the largest opportunities for citizen science. Especially in urban surveys investigating traffic and people flows, extensive manual labor is required, occasionally augmented by smartphones. We present DesPat, an app designed to turn a wide range of low-cost Android phones into a privacy-respecting camera-based pedestrian tracking tool to automatize data collection. This data can then be used to analyze pedestrian traffic patterns in general, and identify crowd hotspots and bottlenecks, which are particularly relevant in light of the recent COVID-19 pandemic. All image analysis is done locally on the device through a convolutional neural network, thereby avoiding any privacy concerns or legal issues regarding video surveillance. We show example heatmap visualizations from deployments of our prototype in urban areas and compare performance data for a variety of phones to discuss suitability of on-device object detection for our usecase of pedestrian data collection.","PeriodicalId":37105,"journal":{"name":"i-com","volume":"17 1","pages":"125 - 139"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DesPat: Smartphone-Based Object Detection for Citizen Science and Urban Surveys\",\"authors\":\"Christopher Getschmann, Florian Echtler\",\"doi\":\"10.31219/osf.io/drs6u\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Data acquisition is a central task in research and one of the largest opportunities for citizen science. Especially in urban surveys investigating traffic and people flows, extensive manual labor is required, occasionally augmented by smartphones. We present DesPat, an app designed to turn a wide range of low-cost Android phones into a privacy-respecting camera-based pedestrian tracking tool to automatize data collection. This data can then be used to analyze pedestrian traffic patterns in general, and identify crowd hotspots and bottlenecks, which are particularly relevant in light of the recent COVID-19 pandemic. All image analysis is done locally on the device through a convolutional neural network, thereby avoiding any privacy concerns or legal issues regarding video surveillance. We show example heatmap visualizations from deployments of our prototype in urban areas and compare performance data for a variety of phones to discuss suitability of on-device object detection for our usecase of pedestrian data collection.\",\"PeriodicalId\":37105,\"journal\":{\"name\":\"i-com\",\"volume\":\"17 1\",\"pages\":\"125 - 139\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"i-com\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31219/osf.io/drs6u\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"i-com","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31219/osf.io/drs6u","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

数据采集是科学研究的核心任务,也是公民科学的最大机遇之一。尤其是在调查交通和人流的城市调查中,需要大量的体力劳动,有时还需要借助智能手机。我们介绍了一款名为DesPat的应用程序,该应用程序旨在将各种低成本的Android手机变成一个尊重隐私的基于摄像头的行人跟踪工具,以自动收集数据。然后,这些数据可用于分析一般的行人交通模式,并确定人群热点和瓶颈,这在最近的COVID-19大流行中尤为重要。所有的图像分析都是通过卷积神经网络在设备上本地完成的,从而避免了任何关于视频监控的隐私问题或法律问题。我们展示了在城市地区部署原型的示例热图可视化,并比较了各种手机的性能数据,以讨论设备上对象检测对行人数据收集用例的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DesPat: Smartphone-Based Object Detection for Citizen Science and Urban Surveys
Abstract Data acquisition is a central task in research and one of the largest opportunities for citizen science. Especially in urban surveys investigating traffic and people flows, extensive manual labor is required, occasionally augmented by smartphones. We present DesPat, an app designed to turn a wide range of low-cost Android phones into a privacy-respecting camera-based pedestrian tracking tool to automatize data collection. This data can then be used to analyze pedestrian traffic patterns in general, and identify crowd hotspots and bottlenecks, which are particularly relevant in light of the recent COVID-19 pandemic. All image analysis is done locally on the device through a convolutional neural network, thereby avoiding any privacy concerns or legal issues regarding video surveillance. We show example heatmap visualizations from deployments of our prototype in urban areas and compare performance data for a variety of phones to discuss suitability of on-device object detection for our usecase of pedestrian data collection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
i-com
i-com Social Sciences-Communication
CiteScore
3.80
自引率
0.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信