Banach空间中伪单调变分不等式问题解的强收敛性

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xin Chang, Muyuan Liu, Liang Yan
{"title":"Banach空间中伪单调变分不等式问题解的强收敛性","authors":"Xin Chang, Muyuan Liu, Liang Yan","doi":"10.12988/ams.2023.917391","DOIUrl":null,"url":null,"abstract":"In this paper, based on the line-search technique, an iteration method to solve pseudomonotone variational inequality problem in 2-uniformly convex Banach spaces is introduced. The iteration scheme presented in this paper is proved to converge strongly to a solution of the pseudomonotone variational inequality problem. Our result extends the main result in [4]","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The strong convergence for solutions of pseudomonotone variational inequality problem in Banach spaces\",\"authors\":\"Xin Chang, Muyuan Liu, Liang Yan\",\"doi\":\"10.12988/ams.2023.917391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, based on the line-search technique, an iteration method to solve pseudomonotone variational inequality problem in 2-uniformly convex Banach spaces is introduced. The iteration scheme presented in this paper is proved to converge strongly to a solution of the pseudomonotone variational inequality problem. Our result extends the main result in [4]\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12988/ams.2023.917391\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12988/ams.2023.917391","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文基于直线搜索技术,提出了一种求解2-一致凸Banach空间中伪单调变分不等式问题的迭代方法。证明了本文提出的迭代格式强收敛于伪单调变分不等式问题的一个解。我们的结果扩展了[4]中的主要结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The strong convergence for solutions of pseudomonotone variational inequality problem in Banach spaces
In this paper, based on the line-search technique, an iteration method to solve pseudomonotone variational inequality problem in 2-uniformly convex Banach spaces is introduced. The iteration scheme presented in this paper is proved to converge strongly to a solution of the pseudomonotone variational inequality problem. Our result extends the main result in [4]
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信