Atsuyuki Ohta, N. Imai, Takashi Okai, M. Manaka, Ran Kubota, A. Nakamura, Yoshiko Tachibana
求助PDF
{"title":"基于水文模型的日本流域地球化学填图分析:流域53种元素的浓度和优势岩性","authors":"Atsuyuki Ohta, N. Imai, Takashi Okai, M. Manaka, Ran Kubota, A. Nakamura, Yoshiko Tachibana","doi":"10.2343/geochemj.2.0618","DOIUrl":null,"url":null,"abstract":"Copyright © 2021 by The Geochemical Society of Japan. cross-boundary and sub-continental geochemical mapping projects have been actively pursued, with the main objective of environmental assessment (Bølviken et al., 1986; De Vos et al., 2006; Reimann et al., 1998; Salminen et al., 2005). In Japan, the Geological Survey of Japan, the National Institute of Advanced Industrial Science and Technology (AIST), has created country-scale land and sea geochemical maps using 3,024 stream sediment samples and 4,905 marine sediment samples, for 53 elements (Imai et al., 2004, 2010). Japanese geochemical mapping is designed for environmental assessment in mining areas, large-scale urban regions, and coastal sea zones, and for the investigation of migration processes of materials from the land to the sea. Sampling location, sample photographs, color maps, and elemental concentrations are available in the online database (https://gbank.gsj.jp/ geochemmap/). Furthermore, we are also in the process of creating a regional spatial distribution map of Sr isotopic ratios using stream sediments, collected for JapaWatershed analysis for geochemical mapping in Japan based on a hydrologic model: The concentrations of 53 elements and the dominant lithology in a drainage basin","PeriodicalId":12682,"journal":{"name":"Geochemical Journal","volume":"88 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Watershed analysis for geochemical mapping in Japan based on a hydrologic model: The concentrations of 53 elements and the dominant lithology in a drainage basin\",\"authors\":\"Atsuyuki Ohta, N. Imai, Takashi Okai, M. Manaka, Ran Kubota, A. Nakamura, Yoshiko Tachibana\",\"doi\":\"10.2343/geochemj.2.0618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copyright © 2021 by The Geochemical Society of Japan. cross-boundary and sub-continental geochemical mapping projects have been actively pursued, with the main objective of environmental assessment (Bølviken et al., 1986; De Vos et al., 2006; Reimann et al., 1998; Salminen et al., 2005). In Japan, the Geological Survey of Japan, the National Institute of Advanced Industrial Science and Technology (AIST), has created country-scale land and sea geochemical maps using 3,024 stream sediment samples and 4,905 marine sediment samples, for 53 elements (Imai et al., 2004, 2010). Japanese geochemical mapping is designed for environmental assessment in mining areas, large-scale urban regions, and coastal sea zones, and for the investigation of migration processes of materials from the land to the sea. Sampling location, sample photographs, color maps, and elemental concentrations are available in the online database (https://gbank.gsj.jp/ geochemmap/). Furthermore, we are also in the process of creating a regional spatial distribution map of Sr isotopic ratios using stream sediments, collected for JapaWatershed analysis for geochemical mapping in Japan based on a hydrologic model: The concentrations of 53 elements and the dominant lithology in a drainage basin\",\"PeriodicalId\":12682,\"journal\":{\"name\":\"Geochemical Journal\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemical Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2343/geochemj.2.0618\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemical Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2343/geochemj.2.0618","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Watershed analysis for geochemical mapping in Japan based on a hydrologic model: The concentrations of 53 elements and the dominant lithology in a drainage basin
Copyright © 2021 by The Geochemical Society of Japan. cross-boundary and sub-continental geochemical mapping projects have been actively pursued, with the main objective of environmental assessment (Bølviken et al., 1986; De Vos et al., 2006; Reimann et al., 1998; Salminen et al., 2005). In Japan, the Geological Survey of Japan, the National Institute of Advanced Industrial Science and Technology (AIST), has created country-scale land and sea geochemical maps using 3,024 stream sediment samples and 4,905 marine sediment samples, for 53 elements (Imai et al., 2004, 2010). Japanese geochemical mapping is designed for environmental assessment in mining areas, large-scale urban regions, and coastal sea zones, and for the investigation of migration processes of materials from the land to the sea. Sampling location, sample photographs, color maps, and elemental concentrations are available in the online database (https://gbank.gsj.jp/ geochemmap/). Furthermore, we are also in the process of creating a regional spatial distribution map of Sr isotopic ratios using stream sediments, collected for JapaWatershed analysis for geochemical mapping in Japan based on a hydrologic model: The concentrations of 53 elements and the dominant lithology in a drainage basin