最小化组合定义pl不变量的紧致4流形结晶

M. R. Casali, P. Cristofori, C. Gagliardi
{"title":"最小化组合定义pl不变量的紧致4流形结晶","authors":"M. R. Casali, P. Cristofori, C. Gagliardi","doi":"10.13137/2464-8728/30760","DOIUrl":null,"url":null,"abstract":"The present paper is devoted to present a unifying survey about some special classes of crystallizations of compact PL $4$-manifolds with empty or connected boundary, called {\\it semi-simple} and {\\it weak semi-simple crystallizations}, with a particular attention to their properties of minimizing combinatorially defined PL-invariants, such as the {\\it regular genus}, the {\\it Gurau degree}, the {\\it gem-complexity} and the {\\it (gem-induced) trisection genus}. The main theorem, yielding a summarizing result on the topic, is an original contribution. Moreover, in the present paper the additivity of regular genus with respect to connected sum is proved to hold for all compact $4$-manifolds with empty or connected boundary which admit weak semi-simple crystallizations.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Crystallizations of compact 4-manifolds minimizing combinatorially defined PL-invariants\",\"authors\":\"M. R. Casali, P. Cristofori, C. Gagliardi\",\"doi\":\"10.13137/2464-8728/30760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper is devoted to present a unifying survey about some special classes of crystallizations of compact PL $4$-manifolds with empty or connected boundary, called {\\\\it semi-simple} and {\\\\it weak semi-simple crystallizations}, with a particular attention to their properties of minimizing combinatorially defined PL-invariants, such as the {\\\\it regular genus}, the {\\\\it Gurau degree}, the {\\\\it gem-complexity} and the {\\\\it (gem-induced) trisection genus}. The main theorem, yielding a summarizing result on the topic, is an original contribution. Moreover, in the present paper the additivity of regular genus with respect to connected sum is proved to hold for all compact $4$-manifolds with empty or connected boundary which admit weak semi-simple crystallizations.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13137/2464-8728/30760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13137/2464-8728/30760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文统一研究了具有空边界或连通边界的紧PL $4$-流形的一些特殊结晶,称为{\it半简单}和{\it弱半简单结晶},并特别注意了它们的最小化组合定义PL不变量的性质,如{\it正则格}、{\it Gurau度}、{\it gem复杂度}和{\it (gem诱导)三分格}。主要定理是一个原创性的贡献,它对这个主题给出了一个总结性的结论。此外,本文还证明了对于所有允许弱半单结晶的具有空边界或连通边界的紧$4$-流形,正则格对连通和的可加性成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crystallizations of compact 4-manifolds minimizing combinatorially defined PL-invariants
The present paper is devoted to present a unifying survey about some special classes of crystallizations of compact PL $4$-manifolds with empty or connected boundary, called {\it semi-simple} and {\it weak semi-simple crystallizations}, with a particular attention to their properties of minimizing combinatorially defined PL-invariants, such as the {\it regular genus}, the {\it Gurau degree}, the {\it gem-complexity} and the {\it (gem-induced) trisection genus}. The main theorem, yielding a summarizing result on the topic, is an original contribution. Moreover, in the present paper the additivity of regular genus with respect to connected sum is proved to hold for all compact $4$-manifolds with empty or connected boundary which admit weak semi-simple crystallizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信