复矩阵多项式的极限经验谱分布

Pub Date : 2021-02-03 DOI:10.1142/S201032632250023X
Giovanni Barbarino, V. Noferini
{"title":"复矩阵多项式的极限经验谱分布","authors":"Giovanni Barbarino, V. Noferini","doi":"10.1142/S201032632250023X","DOIUrl":null,"url":null,"abstract":"We study the empirical spectral distribution (ESD) for complex [Formula: see text] matrix polynomials of degree [Formula: see text] under relatively mild assumptions on the underlying distributions, thus highlighting universality phenomena. In particular, we assume that the entries of each matrix coefficient of the matrix polynomial have mean zero and finite variance, potentially allowing for distinct distributions for entries of distinct coefficients. We derive the almost sure limit of the ESD in two distinct scenarios: (1) [Formula: see text] with [Formula: see text] constant and (2) [Formula: see text] with [Formula: see text] bounded by [Formula: see text] for some [Formula: see text]; the second result additionally requires that the underlying distributions are continuous and uniformly bounded. Our results are universal in the sense that they depend on the choice of the variances and possibly on [Formula: see text] (if it is kept constant), but not on the underlying distributions. The results can be specialized to specific models by fixing the variances, thus obtaining matrix polynomial analogues of results known for special classes of scalar polynomials, such as Kac, Weyl, elliptic and hyperbolic polynomials.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The limit empirical spectral distribution of complex matrix polynomials\",\"authors\":\"Giovanni Barbarino, V. Noferini\",\"doi\":\"10.1142/S201032632250023X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the empirical spectral distribution (ESD) for complex [Formula: see text] matrix polynomials of degree [Formula: see text] under relatively mild assumptions on the underlying distributions, thus highlighting universality phenomena. In particular, we assume that the entries of each matrix coefficient of the matrix polynomial have mean zero and finite variance, potentially allowing for distinct distributions for entries of distinct coefficients. We derive the almost sure limit of the ESD in two distinct scenarios: (1) [Formula: see text] with [Formula: see text] constant and (2) [Formula: see text] with [Formula: see text] bounded by [Formula: see text] for some [Formula: see text]; the second result additionally requires that the underlying distributions are continuous and uniformly bounded. Our results are universal in the sense that they depend on the choice of the variances and possibly on [Formula: see text] (if it is kept constant), but not on the underlying distributions. The results can be specialized to specific models by fixing the variances, thus obtaining matrix polynomial analogues of results known for special classes of scalar polynomials, such as Kac, Weyl, elliptic and hyperbolic polynomials.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S201032632250023X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S201032632250023X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在相对温和的底层分布假设下,研究了复杂的[公式:见文]次矩阵多项式的经验谱分布(ESD),从而突出了普遍性现象。特别是,我们假设矩阵多项式的每个矩阵系数的条目具有平均零和有限方差,可能允许不同系数的条目具有不同的分布。我们在两种不同的情况下推导出ESD的几乎确定极限:(1)[公式:见文]常数为[公式:见文],(2)[公式:见文]以[公式:见文]为界的[公式:见文];第二个结果还要求底层分布是连续且一致有界的。我们的结果是普遍的,因为它们取决于方差的选择,也可能取决于[公式:见文本](如果保持不变),但不取决于潜在的分布。通过固定方差,结果可以专门用于特定的模型,从而获得已知的特殊类别的标量多项式(如Kac, Weyl,椭圆和双曲多项式)结果的矩阵多项式类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The limit empirical spectral distribution of complex matrix polynomials
We study the empirical spectral distribution (ESD) for complex [Formula: see text] matrix polynomials of degree [Formula: see text] under relatively mild assumptions on the underlying distributions, thus highlighting universality phenomena. In particular, we assume that the entries of each matrix coefficient of the matrix polynomial have mean zero and finite variance, potentially allowing for distinct distributions for entries of distinct coefficients. We derive the almost sure limit of the ESD in two distinct scenarios: (1) [Formula: see text] with [Formula: see text] constant and (2) [Formula: see text] with [Formula: see text] bounded by [Formula: see text] for some [Formula: see text]; the second result additionally requires that the underlying distributions are continuous and uniformly bounded. Our results are universal in the sense that they depend on the choice of the variances and possibly on [Formula: see text] (if it is kept constant), but not on the underlying distributions. The results can be specialized to specific models by fixing the variances, thus obtaining matrix polynomial analogues of results known for special classes of scalar polynomials, such as Kac, Weyl, elliptic and hyperbolic polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信