交空间的有理同伦型

Dominik J. Wrazidlo
{"title":"交空间的有理同伦型","authors":"Dominik J. Wrazidlo","doi":"10.5427/jsing.2020.20k","DOIUrl":null,"url":null,"abstract":"Banagl's method of intersection spaces allows to modify certain types of stratified pseudomanifolds near the singular set in such a way that the rational Betti numbers of the modified spaces satisfy generalized Poincare duality in analogy with Goresky-MacPherson's intersection homology. In the case of one isolated singularity, we show that the duality isomorphism comes from a nondegenerate intersection pairing which depends on the choice of a chain representative of the fundamental class of the regular stratum. On the technical side, we use piecewise linear polynomial differential forms due to Sullivan to define a suitable commutative cochain algebra model for intersection spaces. Our construction parallels Banagl's commutative cochain algebra of smooth differential forms modeling intersection space cohomology, and we show that both algebras are weakly equivalent.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the rational homotopy type of intersection spaces\",\"authors\":\"Dominik J. Wrazidlo\",\"doi\":\"10.5427/jsing.2020.20k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Banagl's method of intersection spaces allows to modify certain types of stratified pseudomanifolds near the singular set in such a way that the rational Betti numbers of the modified spaces satisfy generalized Poincare duality in analogy with Goresky-MacPherson's intersection homology. In the case of one isolated singularity, we show that the duality isomorphism comes from a nondegenerate intersection pairing which depends on the choice of a chain representative of the fundamental class of the regular stratum. On the technical side, we use piecewise linear polynomial differential forms due to Sullivan to define a suitable commutative cochain algebra model for intersection spaces. Our construction parallels Banagl's commutative cochain algebra of smooth differential forms modeling intersection space cohomology, and we show that both algebras are weakly equivalent.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5427/jsing.2020.20k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2020.20k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Banagl的交空间方法允许在奇异集附近修正某些类型的分层伪流形,使修正空间的有理Betti数满足与Goresky-MacPherson的交同调类比的广义庞加莱对偶性。在一个孤立奇点的情况下,我们证明了对偶同构来自于一个非简并交点对,它依赖于正则地层基本类链的选择。在技术方面,我们使用分段线性多项式微分形式,由于沙利文定义了一个合适的交换协链代数模型的交空间。我们的构造平行于Banagl的光滑微分形式的交换协链代数,并证明了这两个代数是弱等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the rational homotopy type of intersection spaces
Banagl's method of intersection spaces allows to modify certain types of stratified pseudomanifolds near the singular set in such a way that the rational Betti numbers of the modified spaces satisfy generalized Poincare duality in analogy with Goresky-MacPherson's intersection homology. In the case of one isolated singularity, we show that the duality isomorphism comes from a nondegenerate intersection pairing which depends on the choice of a chain representative of the fundamental class of the regular stratum. On the technical side, we use piecewise linear polynomial differential forms due to Sullivan to define a suitable commutative cochain algebra model for intersection spaces. Our construction parallels Banagl's commutative cochain algebra of smooth differential forms modeling intersection space cohomology, and we show that both algebras are weakly equivalent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信