具有非局部势的非线性Schrödinger方程的有效自适应指数时间积分器

Winfried Auzinger , Iva Březinová , Alexander Grosz , Harald Hofstätter , Othmar Koch , Takeshi Sato
{"title":"具有非局部势的非线性Schrödinger方程的有效自适应指数时间积分器","authors":"Winfried Auzinger ,&nbsp;Iva Březinová ,&nbsp;Alexander Grosz ,&nbsp;Harald Hofstätter ,&nbsp;Othmar Koch ,&nbsp;Takeshi Sato","doi":"10.1016/j.jcmds.2021.100014","DOIUrl":null,"url":null,"abstract":"<div><p>The performance of exponential-based numerical integrators for the time propagation of the equations associated with the multiconfiguration time-dependent Hartree–Fock (MCTDHF) method for the approximation of the multi-particle Schrödinger equation in one space dimension is assessed. Among the most popular integrators such as Runge–Kutta methods, time-splitting, exponential integrators and Lawson methods, exponential Lawson multistep methods with one predictor–corrector step provide the best stability and accuracy at the least effort. This assessment is based on the observation that the evaluation of the nonlocal terms associated with the potential is the computationally most demanding part of such a calculation in our setting. In addition, the predictor step provides an estimator for the local time-stepping error, thus allowing for adaptive time-stepping which reflects the smoothness of the solution and enables to reliably control the accuracy of a computation in a robust way, without the need to guess an optimal stepsize a priori. One-dimensional model examples are studied to compare different time integrators and demonstrate the successful application of our adaptive methods.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"1 ","pages":"Article 100014"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415821000079/pdfft?md5=37b574c538b0935ceb3731af09bc19cf&pid=1-s2.0-S2772415821000079-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Efficient adaptive exponential time integrators for nonlinear Schrödinger equations with nonlocal potential\",\"authors\":\"Winfried Auzinger ,&nbsp;Iva Březinová ,&nbsp;Alexander Grosz ,&nbsp;Harald Hofstätter ,&nbsp;Othmar Koch ,&nbsp;Takeshi Sato\",\"doi\":\"10.1016/j.jcmds.2021.100014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The performance of exponential-based numerical integrators for the time propagation of the equations associated with the multiconfiguration time-dependent Hartree–Fock (MCTDHF) method for the approximation of the multi-particle Schrödinger equation in one space dimension is assessed. Among the most popular integrators such as Runge–Kutta methods, time-splitting, exponential integrators and Lawson methods, exponential Lawson multistep methods with one predictor–corrector step provide the best stability and accuracy at the least effort. This assessment is based on the observation that the evaluation of the nonlocal terms associated with the potential is the computationally most demanding part of such a calculation in our setting. In addition, the predictor step provides an estimator for the local time-stepping error, thus allowing for adaptive time-stepping which reflects the smoothness of the solution and enables to reliably control the accuracy of a computation in a robust way, without the need to guess an optimal stepsize a priori. One-dimensional model examples are studied to compare different time integrators and demonstrate the successful application of our adaptive methods.</p></div>\",\"PeriodicalId\":100768,\"journal\":{\"name\":\"Journal of Computational Mathematics and Data Science\",\"volume\":\"1 \",\"pages\":\"Article 100014\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772415821000079/pdfft?md5=37b574c538b0935ceb3731af09bc19cf&pid=1-s2.0-S2772415821000079-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Mathematics and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772415821000079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415821000079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

评价了指数型数值积分器在一维空间中近似多粒子Schrödinger方程的多组态时变Hartree-Fock (MCTDHF)方法相关方程的时间传播性能。在最流行的积分方法中,如龙格-库塔方法,时间分裂,指数积分和劳森方法,指数劳森多步方法具有一个预测-校正步骤,以最少的努力提供最好的稳定性和准确性。这种评估是基于这样的观察,即与势相关的非局部项的评估是在我们的设置中这种计算中计算要求最高的部分。此外,预测步长为局部时间步长误差提供了一个估计量,从而允许自适应时间步长,这反映了解决方案的平滑性,并且能够以鲁棒的方式可靠地控制计算的精度,而无需先验地猜测最优步长。以一维模型为例,比较了不同的时间积分器,并演示了自适应方法的成功应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient adaptive exponential time integrators for nonlinear Schrödinger equations with nonlocal potential

The performance of exponential-based numerical integrators for the time propagation of the equations associated with the multiconfiguration time-dependent Hartree–Fock (MCTDHF) method for the approximation of the multi-particle Schrödinger equation in one space dimension is assessed. Among the most popular integrators such as Runge–Kutta methods, time-splitting, exponential integrators and Lawson methods, exponential Lawson multistep methods with one predictor–corrector step provide the best stability and accuracy at the least effort. This assessment is based on the observation that the evaluation of the nonlocal terms associated with the potential is the computationally most demanding part of such a calculation in our setting. In addition, the predictor step provides an estimator for the local time-stepping error, thus allowing for adaptive time-stepping which reflects the smoothness of the solution and enables to reliably control the accuracy of a computation in a robust way, without the need to guess an optimal stepsize a priori. One-dimensional model examples are studied to compare different time integrators and demonstrate the successful application of our adaptive methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信