{"title":"2 -噻吩基N -哌嗪基喹诺酮类衍生物的合成及体外抗菌活性研究","authors":"M. Mirzaei, A. Foroumadi","doi":"10.1211/146080800128736196","DOIUrl":null,"url":null,"abstract":"Background and the purpose of the study: Fluoroquinolones are an important group of antimicrobial agents that are used widely in the treatment of various infectious diseases. The purpose of the present study was to synthesize new N-piperazinyl quinolone derivatives with 5-chloro-2-theinyl group having possible antimicrobial activity. Methods: Reaction of ciprofloxacin (1), norfloxacin (2) and enoxacin (3) with α-bromoketone 10 or α-bromooxime derivatives 11a-c in DMF, in the presence of NaHCO3 at room temperature, afforded corresponding ketones 4a-c or oxime derivatives 5-7(a-c), respectively. Results and major conclusion: The synthesized compounds were tested against a series of Grampositive and Gram-negative bacteria. The results of MIC tests against both Gram-positive and Gram-negative bacteria revealed that ciprofloxacin derivatives (compounds 4a, 5a, 6a and 7a) were more active than norfloxacin and enoxacin analogues. Compound 5a, containing N-[2-(5-chlorothiophen-2-yl)-2-hydroxyiminoethyl] residue provided a high in vitro antibacterial activity against Gram-positive bacteria, with MIC of 0.06, 0.125, 0.5 and 0.125 µg/mL against S. aureus, S. epidermidis, E. feacalis and B. subtilis, respectively. Its activity was found to be 4 to 8 times better than reference drug (ciprofloxacin) against all","PeriodicalId":19946,"journal":{"name":"Pharmacy and Pharmacology Communications","volume":"332 1","pages":"351-354"},"PeriodicalIF":0.0000,"publicationDate":"2000-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Synthesis and In‐vitro Antibacterial Activity of N‐Piperazinyl Quinolone Derivatives with a 2‐Thienyl Group\",\"authors\":\"M. Mirzaei, A. Foroumadi\",\"doi\":\"10.1211/146080800128736196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background and the purpose of the study: Fluoroquinolones are an important group of antimicrobial agents that are used widely in the treatment of various infectious diseases. The purpose of the present study was to synthesize new N-piperazinyl quinolone derivatives with 5-chloro-2-theinyl group having possible antimicrobial activity. Methods: Reaction of ciprofloxacin (1), norfloxacin (2) and enoxacin (3) with α-bromoketone 10 or α-bromooxime derivatives 11a-c in DMF, in the presence of NaHCO3 at room temperature, afforded corresponding ketones 4a-c or oxime derivatives 5-7(a-c), respectively. Results and major conclusion: The synthesized compounds were tested against a series of Grampositive and Gram-negative bacteria. The results of MIC tests against both Gram-positive and Gram-negative bacteria revealed that ciprofloxacin derivatives (compounds 4a, 5a, 6a and 7a) were more active than norfloxacin and enoxacin analogues. Compound 5a, containing N-[2-(5-chlorothiophen-2-yl)-2-hydroxyiminoethyl] residue provided a high in vitro antibacterial activity against Gram-positive bacteria, with MIC of 0.06, 0.125, 0.5 and 0.125 µg/mL against S. aureus, S. epidermidis, E. feacalis and B. subtilis, respectively. Its activity was found to be 4 to 8 times better than reference drug (ciprofloxacin) against all\",\"PeriodicalId\":19946,\"journal\":{\"name\":\"Pharmacy and Pharmacology Communications\",\"volume\":\"332 1\",\"pages\":\"351-354\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacy and Pharmacology Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1211/146080800128736196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacy and Pharmacology Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1211/146080800128736196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis and In‐vitro Antibacterial Activity of N‐Piperazinyl Quinolone Derivatives with a 2‐Thienyl Group
Background and the purpose of the study: Fluoroquinolones are an important group of antimicrobial agents that are used widely in the treatment of various infectious diseases. The purpose of the present study was to synthesize new N-piperazinyl quinolone derivatives with 5-chloro-2-theinyl group having possible antimicrobial activity. Methods: Reaction of ciprofloxacin (1), norfloxacin (2) and enoxacin (3) with α-bromoketone 10 or α-bromooxime derivatives 11a-c in DMF, in the presence of NaHCO3 at room temperature, afforded corresponding ketones 4a-c or oxime derivatives 5-7(a-c), respectively. Results and major conclusion: The synthesized compounds were tested against a series of Grampositive and Gram-negative bacteria. The results of MIC tests against both Gram-positive and Gram-negative bacteria revealed that ciprofloxacin derivatives (compounds 4a, 5a, 6a and 7a) were more active than norfloxacin and enoxacin analogues. Compound 5a, containing N-[2-(5-chlorothiophen-2-yl)-2-hydroxyiminoethyl] residue provided a high in vitro antibacterial activity against Gram-positive bacteria, with MIC of 0.06, 0.125, 0.5 and 0.125 µg/mL against S. aureus, S. epidermidis, E. feacalis and B. subtilis, respectively. Its activity was found to be 4 to 8 times better than reference drug (ciprofloxacin) against all