注意路径的三色二部拉姆齐数

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
Ke Wang, Jiannan Zhou, Dong He, Qin Tong
{"title":"注意路径的三色二部拉姆齐数","authors":"Ke Wang, Jiannan Zhou, Dong He, Qin Tong","doi":"10.1080/23799927.2021.1934900","DOIUrl":null,"url":null,"abstract":"For bipartite graphs , the bipartite Ramsey number is the least positive integer p so that any coloring of the edges of with k colors will result in a copy of in the ith color for some i. In this paper, we investigate the appearance of simpler monochromatic graphs such as paths under a 3-colouring of the edges of a bipartite graph. we obtain the exact value of , and for , and for by a new method of proof.","PeriodicalId":37216,"journal":{"name":"International Journal of Computer Mathematics: Computer Systems Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Note on the three-coloured bipartite Ramsey numbers for paths\",\"authors\":\"Ke Wang, Jiannan Zhou, Dong He, Qin Tong\",\"doi\":\"10.1080/23799927.2021.1934900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For bipartite graphs , the bipartite Ramsey number is the least positive integer p so that any coloring of the edges of with k colors will result in a copy of in the ith color for some i. In this paper, we investigate the appearance of simpler monochromatic graphs such as paths under a 3-colouring of the edges of a bipartite graph. we obtain the exact value of , and for , and for by a new method of proof.\",\"PeriodicalId\":37216,\"journal\":{\"name\":\"International Journal of Computer Mathematics: Computer Systems Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Mathematics: Computer Systems Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23799927.2021.1934900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics: Computer Systems Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23799927.2021.1934900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

摘要

对于二部图,二部拉姆齐数是最小的正整数p,因此对其k色边的任何着色都会得到i色边的第i色副本。在本文中,我们研究了更简单的单色图的外观,如二部图边的3色下的路径。通过一种新的证明方法,我们得到了的精确值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Note on the three-coloured bipartite Ramsey numbers for paths
For bipartite graphs , the bipartite Ramsey number is the least positive integer p so that any coloring of the edges of with k colors will result in a copy of in the ith color for some i. In this paper, we investigate the appearance of simpler monochromatic graphs such as paths under a 3-colouring of the edges of a bipartite graph. we obtain the exact value of , and for , and for by a new method of proof.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Mathematics: Computer Systems Theory
International Journal of Computer Mathematics: Computer Systems Theory Computer Science-Computational Theory and Mathematics
CiteScore
1.80
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信