整函数对可微函数类近似的尖锐估计

Q4 Mathematics
V. Babenko, A.Yu. Gromov
{"title":"整函数对可微函数类近似的尖锐估计","authors":"V. Babenko, A.Yu. Gromov","doi":"10.15421/247701","DOIUrl":null,"url":null,"abstract":"In the paper, we find the sharp estimate of the best approximation, by entire functions of exponential type not greater than $\\sigma$, for functions $f(x)$ from the class $W^r H^{\\omega}$ such that $\\lim\\limits_{x \\rightarrow -\\infty} f(x) = \\lim\\limits_{x \\rightarrow \\infty} f(x) = 0$,$$A_{\\sigma}(W^r H^{\\omega}_0)_C = \\frac{1}{\\sigma^{r+1}} \\int\\limits_0^{\\pi} \\Phi_{\\pi, r}(t)\\omega'(t/\\sigma)dt$$for $\\sigma > 0$, $r = 1, 2, 3, \\ldots$ and concave modulus of continuity.Also, we calculate the supremum$$\\sup\\limits_{\\substack{f\\in L^{(r)}\\\\f \\ne const}} \\frac{\\sigma^r A_{\\sigma}(f)_L}{\\omega (f^{(r)}, \\pi/\\sigma)_L} = \\frac{K_L}{2}$$","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"617 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp estimates of approximation of classes of differentiable functions by entire functions\",\"authors\":\"V. Babenko, A.Yu. Gromov\",\"doi\":\"10.15421/247701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, we find the sharp estimate of the best approximation, by entire functions of exponential type not greater than $\\\\sigma$, for functions $f(x)$ from the class $W^r H^{\\\\omega}$ such that $\\\\lim\\\\limits_{x \\\\rightarrow -\\\\infty} f(x) = \\\\lim\\\\limits_{x \\\\rightarrow \\\\infty} f(x) = 0$,$$A_{\\\\sigma}(W^r H^{\\\\omega}_0)_C = \\\\frac{1}{\\\\sigma^{r+1}} \\\\int\\\\limits_0^{\\\\pi} \\\\Phi_{\\\\pi, r}(t)\\\\omega'(t/\\\\sigma)dt$$for $\\\\sigma > 0$, $r = 1, 2, 3, \\\\ldots$ and concave modulus of continuity.Also, we calculate the supremum$$\\\\sup\\\\limits_{\\\\substack{f\\\\in L^{(r)}\\\\\\\\f \\\\ne const}} \\\\frac{\\\\sigma^r A_{\\\\sigma}(f)_L}{\\\\omega (f^{(r)}, \\\\pi/\\\\sigma)_L} = \\\\frac{K_L}{2}$$\",\"PeriodicalId\":52827,\"journal\":{\"name\":\"Researches in Mathematics\",\"volume\":\"617 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Researches in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15421/247701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/247701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们发现了对于$W^r H^{\omega}$类中的函数$f(x)$用指数型的不大于$\sigma$的整个函数的最佳逼近的锐利估计,使得$\lim\limits_{x \rightarrow -\infty} f(x) = \lim\limits_{x \rightarrow \infty} f(x) = 0$, $$A_{\sigma}(W^r H^{\omega}_0)_C = \frac{1}{\sigma^{r+1}} \int\limits_0^{\pi} \Phi_{\pi, r}(t)\omega'(t/\sigma)dt$$对于$\sigma > 0$, $r = 1, 2, 3, \ldots$和凹模的连续性。同时,我们计算上极值$$\sup\limits_{\substack{f\in L^{(r)}\\f \ne const}} \frac{\sigma^r A_{\sigma}(f)_L}{\omega (f^{(r)}, \pi/\sigma)_L} = \frac{K_L}{2}$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp estimates of approximation of classes of differentiable functions by entire functions
In the paper, we find the sharp estimate of the best approximation, by entire functions of exponential type not greater than $\sigma$, for functions $f(x)$ from the class $W^r H^{\omega}$ such that $\lim\limits_{x \rightarrow -\infty} f(x) = \lim\limits_{x \rightarrow \infty} f(x) = 0$,$$A_{\sigma}(W^r H^{\omega}_0)_C = \frac{1}{\sigma^{r+1}} \int\limits_0^{\pi} \Phi_{\pi, r}(t)\omega'(t/\sigma)dt$$for $\sigma > 0$, $r = 1, 2, 3, \ldots$ and concave modulus of continuity.Also, we calculate the supremum$$\sup\limits_{\substack{f\in L^{(r)}\\f \ne const}} \frac{\sigma^r A_{\sigma}(f)_L}{\omega (f^{(r)}, \pi/\sigma)_L} = \frac{K_L}{2}$$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
8
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信