{"title":"整函数对可微函数类近似的尖锐估计","authors":"V. Babenko, A.Yu. Gromov","doi":"10.15421/247701","DOIUrl":null,"url":null,"abstract":"In the paper, we find the sharp estimate of the best approximation, by entire functions of exponential type not greater than $\\sigma$, for functions $f(x)$ from the class $W^r H^{\\omega}$ such that $\\lim\\limits_{x \\rightarrow -\\infty} f(x) = \\lim\\limits_{x \\rightarrow \\infty} f(x) = 0$,$$A_{\\sigma}(W^r H^{\\omega}_0)_C = \\frac{1}{\\sigma^{r+1}} \\int\\limits_0^{\\pi} \\Phi_{\\pi, r}(t)\\omega'(t/\\sigma)dt$$for $\\sigma > 0$, $r = 1, 2, 3, \\ldots$ and concave modulus of continuity.Also, we calculate the supremum$$\\sup\\limits_{\\substack{f\\in L^{(r)}\\\\f \\ne const}} \\frac{\\sigma^r A_{\\sigma}(f)_L}{\\omega (f^{(r)}, \\pi/\\sigma)_L} = \\frac{K_L}{2}$$","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"617 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp estimates of approximation of classes of differentiable functions by entire functions\",\"authors\":\"V. Babenko, A.Yu. Gromov\",\"doi\":\"10.15421/247701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, we find the sharp estimate of the best approximation, by entire functions of exponential type not greater than $\\\\sigma$, for functions $f(x)$ from the class $W^r H^{\\\\omega}$ such that $\\\\lim\\\\limits_{x \\\\rightarrow -\\\\infty} f(x) = \\\\lim\\\\limits_{x \\\\rightarrow \\\\infty} f(x) = 0$,$$A_{\\\\sigma}(W^r H^{\\\\omega}_0)_C = \\\\frac{1}{\\\\sigma^{r+1}} \\\\int\\\\limits_0^{\\\\pi} \\\\Phi_{\\\\pi, r}(t)\\\\omega'(t/\\\\sigma)dt$$for $\\\\sigma > 0$, $r = 1, 2, 3, \\\\ldots$ and concave modulus of continuity.Also, we calculate the supremum$$\\\\sup\\\\limits_{\\\\substack{f\\\\in L^{(r)}\\\\\\\\f \\\\ne const}} \\\\frac{\\\\sigma^r A_{\\\\sigma}(f)_L}{\\\\omega (f^{(r)}, \\\\pi/\\\\sigma)_L} = \\\\frac{K_L}{2}$$\",\"PeriodicalId\":52827,\"journal\":{\"name\":\"Researches in Mathematics\",\"volume\":\"617 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Researches in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15421/247701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/247701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Sharp estimates of approximation of classes of differentiable functions by entire functions
In the paper, we find the sharp estimate of the best approximation, by entire functions of exponential type not greater than $\sigma$, for functions $f(x)$ from the class $W^r H^{\omega}$ such that $\lim\limits_{x \rightarrow -\infty} f(x) = \lim\limits_{x \rightarrow \infty} f(x) = 0$,$$A_{\sigma}(W^r H^{\omega}_0)_C = \frac{1}{\sigma^{r+1}} \int\limits_0^{\pi} \Phi_{\pi, r}(t)\omega'(t/\sigma)dt$$for $\sigma > 0$, $r = 1, 2, 3, \ldots$ and concave modulus of continuity.Also, we calculate the supremum$$\sup\limits_{\substack{f\in L^{(r)}\\f \ne const}} \frac{\sigma^r A_{\sigma}(f)_L}{\omega (f^{(r)}, \pi/\sigma)_L} = \frac{K_L}{2}$$