使用显著性检测和图匹配检索图像

Shao Huang, Weiqiang Wang, Hui Zhang
{"title":"使用显著性检测和图匹配检索图像","authors":"Shao Huang, Weiqiang Wang, Hui Zhang","doi":"10.1109/ICIP.2014.7025624","DOIUrl":null,"url":null,"abstract":"The need for fast retrieving images has recently increased tremendously in many application areas (biomedicine, military, commerce, education, etc.). In this work, we exploit the saliency detection to select a group of salient regions and utilize an undirected graph to model the dependency among these salient regions, so that the similarity of images can be measured by calculating the similarity of the corresponding graphs. Identification of salient pixels can decrease interferences from irrelevant information, and make the image representation more effective. The introduction of the graph model can better characterize the spatial constraints among salient regions. The comparison experiments are carried out on the three representative datasets publicly available (Holidays, UKB, and Oxford 5k), and the experimental results show that the integration of the proposed method and the SIFT-like local descriptors can better improve the existing state-of-the-art retrieval accuracy.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"116 1","pages":"3087-3091"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Retrieving images using saliency detection and graph matching\",\"authors\":\"Shao Huang, Weiqiang Wang, Hui Zhang\",\"doi\":\"10.1109/ICIP.2014.7025624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need for fast retrieving images has recently increased tremendously in many application areas (biomedicine, military, commerce, education, etc.). In this work, we exploit the saliency detection to select a group of salient regions and utilize an undirected graph to model the dependency among these salient regions, so that the similarity of images can be measured by calculating the similarity of the corresponding graphs. Identification of salient pixels can decrease interferences from irrelevant information, and make the image representation more effective. The introduction of the graph model can better characterize the spatial constraints among salient regions. The comparison experiments are carried out on the three representative datasets publicly available (Holidays, UKB, and Oxford 5k), and the experimental results show that the integration of the proposed method and the SIFT-like local descriptors can better improve the existing state-of-the-art retrieval accuracy.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"116 1\",\"pages\":\"3087-3091\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

最近,在许多应用领域(生物医学、军事、商业、教育等),对快速检索图像的需求急剧增加。在这项工作中,我们利用显著性检测来选择一组显著区域,并利用无向图来建模这些显著区域之间的依赖关系,从而通过计算相应图的相似度来衡量图像的相似度。显著像素的识别可以减少不相关信息的干扰,使图像表示更有效。图模型的引入可以更好地表征显著区域之间的空间约束。对比实验结果表明,将所提方法与类sift局部描述符相结合,能够较好地提高现有的最优检索精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Retrieving images using saliency detection and graph matching
The need for fast retrieving images has recently increased tremendously in many application areas (biomedicine, military, commerce, education, etc.). In this work, we exploit the saliency detection to select a group of salient regions and utilize an undirected graph to model the dependency among these salient regions, so that the similarity of images can be measured by calculating the similarity of the corresponding graphs. Identification of salient pixels can decrease interferences from irrelevant information, and make the image representation more effective. The introduction of the graph model can better characterize the spatial constraints among salient regions. The comparison experiments are carried out on the three representative datasets publicly available (Holidays, UKB, and Oxford 5k), and the experimental results show that the integration of the proposed method and the SIFT-like local descriptors can better improve the existing state-of-the-art retrieval accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信