{"title":"石英中9.3 Gc弹性波在4.2°K时衰减非常小","authors":"M.G. Blair , E.H. Jacobsen","doi":"10.1016/0031-9163(66)90205-8","DOIUrl":null,"url":null,"abstract":"<div><p>Attenuation measurements on compressional elastic waves in quartz at 9.3 Gc/s and at 4.2°K reveal unexpectedly low values of the order of 10<sup>-3</sup> db/cm. The trend of our data for increasing lengths of sample suggest that most of the observed loss results from imperfect end faces, and that the true bulk attenuation may be less than 10<sup>-4</sup> db/cm at x-band frequencies.</p></div>","PeriodicalId":101027,"journal":{"name":"Physics Letters","volume":"23 11","pages":"Pages 647-648"},"PeriodicalIF":0.0000,"publicationDate":"1966-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0031-9163(66)90205-8","citationCount":"9","resultStr":"{\"title\":\"Very low attenuation of 9.3 Gc elastic waves in quartz at 4.2°K\",\"authors\":\"M.G. Blair , E.H. Jacobsen\",\"doi\":\"10.1016/0031-9163(66)90205-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Attenuation measurements on compressional elastic waves in quartz at 9.3 Gc/s and at 4.2°K reveal unexpectedly low values of the order of 10<sup>-3</sup> db/cm. The trend of our data for increasing lengths of sample suggest that most of the observed loss results from imperfect end faces, and that the true bulk attenuation may be less than 10<sup>-4</sup> db/cm at x-band frequencies.</p></div>\",\"PeriodicalId\":101027,\"journal\":{\"name\":\"Physics Letters\",\"volume\":\"23 11\",\"pages\":\"Pages 647-648\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1966-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0031-9163(66)90205-8\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0031916366902058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0031916366902058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Very low attenuation of 9.3 Gc elastic waves in quartz at 4.2°K
Attenuation measurements on compressional elastic waves in quartz at 9.3 Gc/s and at 4.2°K reveal unexpectedly low values of the order of 10-3 db/cm. The trend of our data for increasing lengths of sample suggest that most of the observed loss results from imperfect end faces, and that the true bulk attenuation may be less than 10-4 db/cm at x-band frequencies.