{"title":"2口水下凝析气井的酸和阻垢剂挤压处理:水下连接设计、处理、井启动和操作结果","authors":"S. Hatscher, Maxim Kiselnikov","doi":"10.2118/193540-MS","DOIUrl":null,"url":null,"abstract":"\n On the Vega gas condensate and oil field in the Norwegian North Sea, two high temperature, high pressure (HTHP) gas condensate wells on one subsea template in 370 m water depth were acid and scale inhibitor treated in order to improve productivity by acid scale removal and prevent future scaling. Significant amount of work was undertaken on design and qualification of the treatment fluids. In order to reduce operation time and increase efficiency, a novel one-time connection concept was utilized. During the operations, wells were kicked off after energizing with gas bullheaded from the neighbouring well. The treatment fluids were designed to reduce consequences for the host facility due to H2S generated during the operation - this required optimization after understanding of the H2S source as witnessed in prior treatments.\n The new concept with one-time connection was successfully employed and allowed for three subsequent well treatments in a row, thus saving at least two days vessel operations time. The gas injection from the neighbouring well - the one not treated at the moment - allowed for an efficient start-up of the treated well without need for larger nitrogen injection which would have led to contamination and potentially to flaring due to off-spec gas. The introduction of a batch with pH neutralizer and H2S scavenger batch into the treatment design to be placed into the production pipeline reduced H2S liberation and production to the host facilities, thus limiting the operational stress on the platform. Productivity of well A1 showed an immediately significant increase after the operations, whereas productivity of well A2 required a longer clean-up than originally anticipated.","PeriodicalId":11243,"journal":{"name":"Day 2 Tue, April 09, 2019","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acid and Scale Inhibitor Squeeze Treatments on Two Subsea Gas Condensate Wells: Design of Subsea Connection, Treatment, Wells Start-Up and Results of the Operation.\",\"authors\":\"S. Hatscher, Maxim Kiselnikov\",\"doi\":\"10.2118/193540-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n On the Vega gas condensate and oil field in the Norwegian North Sea, two high temperature, high pressure (HTHP) gas condensate wells on one subsea template in 370 m water depth were acid and scale inhibitor treated in order to improve productivity by acid scale removal and prevent future scaling. Significant amount of work was undertaken on design and qualification of the treatment fluids. In order to reduce operation time and increase efficiency, a novel one-time connection concept was utilized. During the operations, wells were kicked off after energizing with gas bullheaded from the neighbouring well. The treatment fluids were designed to reduce consequences for the host facility due to H2S generated during the operation - this required optimization after understanding of the H2S source as witnessed in prior treatments.\\n The new concept with one-time connection was successfully employed and allowed for three subsequent well treatments in a row, thus saving at least two days vessel operations time. The gas injection from the neighbouring well - the one not treated at the moment - allowed for an efficient start-up of the treated well without need for larger nitrogen injection which would have led to contamination and potentially to flaring due to off-spec gas. The introduction of a batch with pH neutralizer and H2S scavenger batch into the treatment design to be placed into the production pipeline reduced H2S liberation and production to the host facilities, thus limiting the operational stress on the platform. Productivity of well A1 showed an immediately significant increase after the operations, whereas productivity of well A2 required a longer clean-up than originally anticipated.\",\"PeriodicalId\":11243,\"journal\":{\"name\":\"Day 2 Tue, April 09, 2019\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, April 09, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/193540-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, April 09, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/193540-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Acid and Scale Inhibitor Squeeze Treatments on Two Subsea Gas Condensate Wells: Design of Subsea Connection, Treatment, Wells Start-Up and Results of the Operation.
On the Vega gas condensate and oil field in the Norwegian North Sea, two high temperature, high pressure (HTHP) gas condensate wells on one subsea template in 370 m water depth were acid and scale inhibitor treated in order to improve productivity by acid scale removal and prevent future scaling. Significant amount of work was undertaken on design and qualification of the treatment fluids. In order to reduce operation time and increase efficiency, a novel one-time connection concept was utilized. During the operations, wells were kicked off after energizing with gas bullheaded from the neighbouring well. The treatment fluids were designed to reduce consequences for the host facility due to H2S generated during the operation - this required optimization after understanding of the H2S source as witnessed in prior treatments.
The new concept with one-time connection was successfully employed and allowed for three subsequent well treatments in a row, thus saving at least two days vessel operations time. The gas injection from the neighbouring well - the one not treated at the moment - allowed for an efficient start-up of the treated well without need for larger nitrogen injection which would have led to contamination and potentially to flaring due to off-spec gas. The introduction of a batch with pH neutralizer and H2S scavenger batch into the treatment design to be placed into the production pipeline reduced H2S liberation and production to the host facilities, thus limiting the operational stress on the platform. Productivity of well A1 showed an immediately significant increase after the operations, whereas productivity of well A2 required a longer clean-up than originally anticipated.