{"title":"一种基于多层注意力模型的答案汇总方案","authors":"Xiaolong Xu, Yihao Dong, Jian Song","doi":"10.1109/CSCWD57460.2023.10152597","DOIUrl":null,"url":null,"abstract":"At present, deep learning technologies have been widely used in the field of natural language process, such as text summarization. In CQA, the answer summary could help users get a complete answer quickly. There are still some problems with the current answer summary scheme, such as semantic inconsistency, repetition of words, etc. In order to solve this, we propose a novel scheme Answer Summarization based on Multi-layer Attention Scheme (ASMAM). Based on the traditional Seq2Seq, we introduce self-attention and multi-head attention scheme respectively during sentence and text encoding, which could improve text representation ability of the model. In order to solve \"long distance dependence\" of RNN and too many parameters of LSTM, we all use GRU as the neuron at the encoder and decoder sides. Experiments over the Yahoo! Answers dataset demonstrate that the coherence and fluency of the generated summary are all superior to the benchmark model in ROUGE evaluation system.","PeriodicalId":51008,"journal":{"name":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","volume":"7 1 1","pages":"143-148"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Answer Summarization Scheme Based on Multilayer Attention Model\",\"authors\":\"Xiaolong Xu, Yihao Dong, Jian Song\",\"doi\":\"10.1109/CSCWD57460.2023.10152597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, deep learning technologies have been widely used in the field of natural language process, such as text summarization. In CQA, the answer summary could help users get a complete answer quickly. There are still some problems with the current answer summary scheme, such as semantic inconsistency, repetition of words, etc. In order to solve this, we propose a novel scheme Answer Summarization based on Multi-layer Attention Scheme (ASMAM). Based on the traditional Seq2Seq, we introduce self-attention and multi-head attention scheme respectively during sentence and text encoding, which could improve text representation ability of the model. In order to solve \\\"long distance dependence\\\" of RNN and too many parameters of LSTM, we all use GRU as the neuron at the encoder and decoder sides. Experiments over the Yahoo! Answers dataset demonstrate that the coherence and fluency of the generated summary are all superior to the benchmark model in ROUGE evaluation system.\",\"PeriodicalId\":51008,\"journal\":{\"name\":\"Computer Supported Cooperative Work-The Journal of Collaborative Computing\",\"volume\":\"7 1 1\",\"pages\":\"143-148\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Supported Cooperative Work-The Journal of Collaborative Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCWD57460.2023.10152597\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/CSCWD57460.2023.10152597","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
An Answer Summarization Scheme Based on Multilayer Attention Model
At present, deep learning technologies have been widely used in the field of natural language process, such as text summarization. In CQA, the answer summary could help users get a complete answer quickly. There are still some problems with the current answer summary scheme, such as semantic inconsistency, repetition of words, etc. In order to solve this, we propose a novel scheme Answer Summarization based on Multi-layer Attention Scheme (ASMAM). Based on the traditional Seq2Seq, we introduce self-attention and multi-head attention scheme respectively during sentence and text encoding, which could improve text representation ability of the model. In order to solve "long distance dependence" of RNN and too many parameters of LSTM, we all use GRU as the neuron at the encoder and decoder sides. Experiments over the Yahoo! Answers dataset demonstrate that the coherence and fluency of the generated summary are all superior to the benchmark model in ROUGE evaluation system.
期刊介绍:
Computer Supported Cooperative Work (CSCW): The Journal of Collaborative Computing and Work Practices is devoted to innovative research in computer-supported cooperative work (CSCW). It provides an interdisciplinary and international forum for the debate and exchange of ideas concerning theoretical, practical, technical, and social issues in CSCW.
The CSCW Journal arose in response to the growing interest in the design, implementation and use of technical systems (including computing, information, and communications technologies) which support people working cooperatively, and its scope remains to encompass the multifarious aspects of research within CSCW and related areas.
The CSCW Journal focuses on research oriented towards the development of collaborative computing technologies on the basis of studies of actual cooperative work practices (where ‘work’ is used in the wider sense). That is, it welcomes in particular submissions that (a) report on findings from ethnographic or similar kinds of in-depth fieldwork of work practices with a view to their technological implications, (b) report on empirical evaluations of the use of extant or novel technical solutions under real-world conditions, and/or (c) develop technical or conceptual frameworks for practice-oriented computing research based on previous fieldwork and evaluations.