纯生物乙醇燃料下不同点火时间下火花点火发动机能量与火用分析

Q3 Mathematics
M. Paloboran, H. Syam, M. Yahya, Jamaluddin
{"title":"纯生物乙醇燃料下不同点火时间下火花点火发动机能量与火用分析","authors":"M. Paloboran, H. Syam, M. Yahya, Jamaluddin","doi":"10.18698/1812-3368-2023-2-140-159","DOIUrl":null,"url":null,"abstract":"The first and second laws of thermodynamics analysis used to show the rate of energy and exergy as a performance of SI-PFI engine with the variation of fuel ignition between 10 and 26 BTDC (before top dead Centre) at interval 4 BTDC. The engine was performed on eight levels of speed in intervals 2000--8000 RPM (increment of 1000 RPM) with pure bioethanol fuel (E100) and 13:1 of compression ratio. The effect of fuel ignition on energy and exergy analysis of E100 fuel will be compared with E0 as reference fuel that performed in 11:1 of compression ratio and 10 BTDC. The results show that the maximum efficiency of energy and exergy for the E100 are 46.59 and 41.90 % at 18 BTDC and 6000 RPM. Meanwhile, the maximum efficiency of energy and exergy for E0 were 43.33 and 31.76 % at 5000 RPM. Moreover, the minimum BSFC for the E100 is 0.2867 kg/(kW•h) at 6000 RPM and 18 BTDC while for the E0 is 0.1960 kg/(kW•h) at 5000 RPM. These results indicate that E100 is more effectivein transferring heat into useful work although it is 30 % more wasteful than E0","PeriodicalId":12961,"journal":{"name":"Herald of the Bauman Moscow State Technical University. Series Natural Sciences","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy and Exergy Analysis on Spark Ignition Engines under Varying Ignition Timing with Pure Bioethanol Fuel\",\"authors\":\"M. Paloboran, H. Syam, M. Yahya, Jamaluddin\",\"doi\":\"10.18698/1812-3368-2023-2-140-159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first and second laws of thermodynamics analysis used to show the rate of energy and exergy as a performance of SI-PFI engine with the variation of fuel ignition between 10 and 26 BTDC (before top dead Centre) at interval 4 BTDC. The engine was performed on eight levels of speed in intervals 2000--8000 RPM (increment of 1000 RPM) with pure bioethanol fuel (E100) and 13:1 of compression ratio. The effect of fuel ignition on energy and exergy analysis of E100 fuel will be compared with E0 as reference fuel that performed in 11:1 of compression ratio and 10 BTDC. The results show that the maximum efficiency of energy and exergy for the E100 are 46.59 and 41.90 % at 18 BTDC and 6000 RPM. Meanwhile, the maximum efficiency of energy and exergy for E0 were 43.33 and 31.76 % at 5000 RPM. Moreover, the minimum BSFC for the E100 is 0.2867 kg/(kW•h) at 6000 RPM and 18 BTDC while for the E0 is 0.1960 kg/(kW•h) at 5000 RPM. These results indicate that E100 is more effectivein transferring heat into useful work although it is 30 % more wasteful than E0\",\"PeriodicalId\":12961,\"journal\":{\"name\":\"Herald of the Bauman Moscow State Technical University. Series Natural Sciences\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Herald of the Bauman Moscow State Technical University. Series Natural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18698/1812-3368-2023-2-140-159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Herald of the Bauman Moscow State Technical University. Series Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18698/1812-3368-2023-2-140-159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

用热力学第一和第二定律分析了SI-PFI发动机的能量和火用率,以及燃料点火在10和26 BTDC(上止点前)间隔4 BTDC时的变化。发动机在2000- 8000 RPM(增量1000 RPM)的8个级别上运行,使用纯生物乙醇燃料(E100),压缩比为13:1。将燃料点火对E100燃料能量和火用分析的影响与参考燃料E0在11:1压缩比和10 BTDC下进行比较。结果表明,E100在18btdc和6000 RPM转速下的能量效率和火用效率分别为46.59%和41.90%。在5000rpm时,E0的能量效率和火用效率分别为43.33%和31.76%。此外,E100在6000 RPM和18 BTDC时的最小BSFC为0.2867 kg/(kW•h),而E0在5000 RPM时的最小BSFC为0.1960 kg/(kW•h)。这些结果表明E100比E0更有效地将热量转化为有用的功,尽管它比E0多浪费30%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy and Exergy Analysis on Spark Ignition Engines under Varying Ignition Timing with Pure Bioethanol Fuel
The first and second laws of thermodynamics analysis used to show the rate of energy and exergy as a performance of SI-PFI engine with the variation of fuel ignition between 10 and 26 BTDC (before top dead Centre) at interval 4 BTDC. The engine was performed on eight levels of speed in intervals 2000--8000 RPM (increment of 1000 RPM) with pure bioethanol fuel (E100) and 13:1 of compression ratio. The effect of fuel ignition on energy and exergy analysis of E100 fuel will be compared with E0 as reference fuel that performed in 11:1 of compression ratio and 10 BTDC. The results show that the maximum efficiency of energy and exergy for the E100 are 46.59 and 41.90 % at 18 BTDC and 6000 RPM. Meanwhile, the maximum efficiency of energy and exergy for E0 were 43.33 and 31.76 % at 5000 RPM. Moreover, the minimum BSFC for the E100 is 0.2867 kg/(kW•h) at 6000 RPM and 18 BTDC while for the E0 is 0.1960 kg/(kW•h) at 5000 RPM. These results indicate that E100 is more effectivein transferring heat into useful work although it is 30 % more wasteful than E0
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
40
期刊介绍: The journal is aimed at publishing most significant results of fundamental and applied studies and developments performed at research and industrial institutions in the following trends (ASJC code): 2600 Mathematics 2200 Engineering 3100 Physics and Astronomy 1600 Chemistry 1700 Computer Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信